• Treffer 8 von 45
Zurück zur Trefferliste

Continuous synthesis of a high energetic substance using small scale reactors

  • For the industrial production of chemicals a safe process design is required to avoid harm to people and environment. It becomes tremendous important if one or more of the following points are characteristic for the synthesis: high heat release, explosive atmosphere, presence of toxic and/or of thermal unstable substances. One substance group, known for being unstable, is the group of organic peroxides. They are potential high energetic substances. Many syntheses of organic peroxides are carried out in semi-batch mode to control the heat release in a good manner. With the aim to increase process control, the advantages of continuous reaction mode, combined with micro reaction technology, are used for the synthesis of one specific organic peroxide in this work. This approach is not only characterised by shorter residence time, good heat transfer, but also by smaller quantities of managed chemicals, and, therefore, by a lower hazard potential. Often yield and selectivity can be improvedFor the industrial production of chemicals a safe process design is required to avoid harm to people and environment. It becomes tremendous important if one or more of the following points are characteristic for the synthesis: high heat release, explosive atmosphere, presence of toxic and/or of thermal unstable substances. One substance group, known for being unstable, is the group of organic peroxides. They are potential high energetic substances. Many syntheses of organic peroxides are carried out in semi-batch mode to control the heat release in a good manner. With the aim to increase process control, the advantages of continuous reaction mode, combined with micro reaction technology, are used for the synthesis of one specific organic peroxide in this work. This approach is not only characterised by shorter residence time, good heat transfer, but also by smaller quantities of managed chemicals, and, therefore, by a lower hazard potential. Often yield and selectivity can be improved additionally. For the study a peroxyester, namely tert-Butyl peroxy-2-ethylhexanoate (TBPEH), with known thermal hazard potential was chosen. The two phase liquid/liquid reaction was carried out in three types of reactors. A small scale tubular reactor, stressed by ultrasound, and two different micro structured reactors were used. One of them had a meandering and the other a split-and-recombine channel structure. Synthesis temperature was also varied. From preliminary studies it was known that the side reaction of the involved carboxylic acid chloride to the corresponding acid can become more important in continuous mode compared to semi-batch mode. The effect of reactor type and temperature on selectivity and therefore yield of TBPEH was analysed and compared. In result the reaction could be carried out in a safe manner. The high heat-exchanging efficiency of the used reactors and the short residence time allowed synthesis temperature near the onset temperature of decomposition of TBPEH. In relation to the results of the capillary tube and of the reactor with meandering channel structure (MR), the results for the split-and-recombine reactor (SAR) showed the best trend line. Further studies have to underline the result. Compared to the traditional reaction path (the semi-batch mode), a higher space time yield could be achieved. This promising information is accompanied by the fact of low reaction volumes. In consequence the productivity is low without a numbering up of reaction channels or a scaling up of it. The nowadays existing philosophy of producing a specific quantity of product by a company, followed by the transport to the costumer may change. Just organic peroxides, used in small quantities, e.g. as initiators for polymerisation processes or as resin hardeners, provide the opportunity for an on-demand-production.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Lutz Fritzsche, Annett Knorr
Dokumenttyp:Beitrag zu einem Tagungsband
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):ICheaP11 - 11th International conference on chemical & process engineering (Proceedings)
Jahr der Erstveröffentlichung:2013
Verlag:AIDIC, Associazione Italiana di Ingegneria Chimica
Verlagsort:Milan
Ausgabe/Heft:32
Erste Seite:685
Letzte Seite:690
Freie Schlagwörter:Continuous mode; Organic peroxide; Process safety; Small scale reactor
Veranstaltung:ICheaP-11 - 11th International conference on chemical & process engineering
Veranstaltungsort:Milan, Italy
Beginndatum der Veranstaltung:2013-06-02
Enddatum der Veranstaltung:2013-06-05
DOI:10.3303/CET1332115
ISSN:1974-9791
ISBN:978-88-95608-23-5
Bemerkung:
Serientitel: Chemical engineering transactions – Series title: Chemical engineering transactions
Verfügbarkeit des Dokuments:Physisches Exemplar in der Bibliothek der BAM vorhanden ("Hardcopy Access")
Bibliotheksstandort:Sonderstandort: Publica-Schrank
Datum der Freischaltung:20.02.2016
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:27.06.2013
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.