• search hit 1 of 2
Back to Result List

An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature

  • Laminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21 to 30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0 to 30 vol.%) at elevated pressure (1–10 bar) and temperature (298–473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. TheLaminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21 to 30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0 to 30 vol.%) at elevated pressure (1–10 bar) and temperature (298–473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. The experiments show that increasing the initial temperature, fuel hydrogen content, or oxidizer oxygen content causes the laminar flame speed to increase, while it decreases when increasing the initial pressure. The proposed kinetic model predicts the same trends than experiments and a good agreement is found with measurements for a wide range of conditions. The model suggests that under rich conditions the N2H2 formation path is favored compared to stoichiometric condition. The most important reactions under rich conditions are: NH2+NH=N2H2+H, NH2+NH2=N2H2+H2, N2H2+H=NNH+H2 and N2H2+M=NNH+H+M. These reactions were also found to be among the most sensitive reactions for predicting the laminar flame speed for all the cases investigated.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Krishna Prasad ShresthaORCiD, Charles Lhuillier, Amanda Alves Barbosa, Pierre Brequigny, Francesco Contino, Christine Mounaïm-Rousselle, Lars SeidelORCiD, Fabian MaußORCiD
URL:https://www.sciencedirect.com/science/article/pii/S1540748920302881#!
DOI:https://doi.org/10.1016/j.proci.2020.06.197
ISSN:1540-7489
Title of the source (English):Proceedings of the Combustion Institute
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2020
Tag:Ammonia; Ammonia-hydrogen; Kinetic modeling; Laminar flame speed; NOx
Volume/Year:2020
First Page:1
Last Page:12
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Thermodynamik / Thermische Verfahrenstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.