Refine
Year of publication
Document Type
Way of publication
- Open Access (1)
Keywords
- Kinetic modeling (5)
- NOx (5)
- Detailed Chemistry (3)
- Gasoline (3)
- Laminar flame speed (3)
- Simulation (3)
- Spark Ignition Engine (3)
- Stochastic Reactor Model (3)
- Ammonia (2)
- Combustion, Mechanism Reduction (2)
Institute
BTU
Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame
(2015)
An existing comprehensive kinetic hydrocarbon oxidation model has been augmented and revised for a detailed analysis of n-heptane flame chemistry. The analysis was enabled by experiments in which the detailed species composition in a fuel-rich flat premixed (ϕ=1.69) n-heptane flame at 40mbar has been studied by flame-sampling molecular-beam mass spectrometry using electron impact ionization. Mole fraction profiles of more than 80 different species have been measured and compared against the new detailed kinetic model consisting of 349 species and 3686 elementary reactions. For all major products and most of the minor intermediates, a good agreement of the modeling results with the experimentally-observed mole fraction profiles has been found. The presence of low- and intermediate-temperature chemistry close to the burner surface was consistently observed in the experiment and the simulation. With the same kinetic model, n-heptane auto-ignition timing, flame speeds and species composition in a jet-stirred reactor have been successfully simulated for a broad range of temperatures (500-2000K) and pressures (1-40bar). The comprehensive nature and wide applicability of the new model were further demonstrated by the examination of various target experiments for other C1 to C7 fuels.
A chemical species lumping approach for reduction
of large hydrocarbons and oxygenated fuels is presented. The methodology is based on an a priori analysis of the Gibbs free energy of the isomer species which is then used as main criteria for the evaluation of lumped group. Isomers with similar Gibbs free energy are lumped assuming they present equal concentrations when applied to standard reactor conditions. Unlike several lumping approaches found in literature, no calculation results from the primary mechanism have been employed prior to the application of our chemical lumping strategy.
In this work we apply various concepts of mechanism reduction with a PDF based method for species profile
conservation. The reduction process is kept time efficient by only using 0D and 1D reactors. To account for the expansion phase in internal combustion engines a stochastic engine tool is used to validate the reduction steps.