05C15 Coloring of graphs and hypergraphs
Refine
Document Type
- ZIB-Report (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- graph theory (2)
- integer programming (2)
- Hom complexes (1)
- combinatorial optimization (1)
- flag complexes (1)
- frequency assignment (1)
- graph coloring (1)
- graph coloring complexes (1)
- graph coloring manifolds (1)
- optical networks (1)
Institute
- ZIB Allgemein (4)
Graph Coloring Manifolds
(2006)
We introduce a new and rich class of graph coloring manifolds via the Hom complex construction of Lov\´{a}sz. The class comprises examples of Stiefel manifolds, series of spheres and products of spheres, cubical surfaces, as well as examples of Seifert manifolds. Asymptotically, graph coloring manifolds provide examples of highly connected, highly symmetric manifolds.
In this paper, we study wavelength assignment problems in multi-fiber WDM networks. We focus on the special case that all lightpaths have at most two links. This in particular holds in case the network topology is a star. As the links incident to a specific node in a meshed topology form a star subnetwork, results for stars are also of interest for general meshed topologies. We show that wavelength assignment with at most two links per lightpath can be modeled as a generalized edge coloring problem. By this relation, we show that for a network with an even number of fibers at all links and at most two links per lightpath, all lightpaths can be assigned a wavelength without conversion. Moreover, we derive a lower bound on the number of lightpaths to be converted for networks with arbitrary numbers of fibers at the links. A comparison with linear programming lower bounds reveals that the bounds coincide for problems with at most two links per lightpath. For meshed topologies, the cumulative lower bound over all star subnetworks equals the best known solution value for all realistic wavelength assignment instances available, by this proving optimality.
This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical and organizational side constraints. Among these ramifications are $T$-coloring and list coloring. To model all the subtleties, the techniques of integer programming have proven to be very useful. The ability to produce good frequency plans in practice is essential for the quality of mobile phone networks. The present algorithmic solution methods employ variants of some of the traditional coloring heuristics as well as more sophisticated machinery from mathematical programming. This paper will also address this issue. Finally, this paper discusses several practical frequency assignment problems in detail, states the associated mathematical models, and also points to public electronic libraries of frequency assignment problems from practice. The associated graphs have up to several thousand nodes and range from rather sparse to almost complete.