## 82B30 Statistical thermodynamics [See also 80-XX]

- Chemical potential of liquids and mixtures via Adaptive Resolution Simulation (2014)
- We employ the adaptive resolution approach AdResS, in its recently developed Grand Canonicallike version (GC-AdResS) [Wang et al. Phys.Rev.X 3, 011018 (2013)], to calculate the excess chemical potential, $μ^{ex}$, of various liquids and mixtures. We compare our results with those obtained from full atomistic simulations using the technique of thermodynamic integration and show a satisfactory agreement. In GC-AdResS the procedure to calculate $μ^{ex}$ corresponds to the process of standard initial equilibration of the system; this implies that, independently of the specific aim of the study, $μ^{ex}$, for each molecular species, is automatically calculated every time a GC-AdResS simulation is performed.

- A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator (2011)
- Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.

- A Subspace Approach to Molecular Markov State Models via an Infinitesimal Generator (2009)
- Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.