TY - GEN A1 - Weber, Marcus T1 - A Subspace Approach to Molecular Markov State Models via an Infinitesimal Generator N2 - Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern. T3 - ZIB-Report - 09-27 KW - Robuste Perron Cluster Analyse KW - Molekülkinetik KW - Übergangsraten KW - Robust Perron cluster analysis KW - molecular kinetics KW - transition rates Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-11432 SN - 1438-0064 ER - TY - THES A1 - Weber, Marcus T1 - A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator N2 - Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern. KW - Conformation Dynamics KW - Molecular Kinetics KW - Transition Rates KW - Markov State Models Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-14025 ER - TY - GEN A1 - Agarwal, Animesh A1 - Wang, Han A1 - Schütte, Christof A1 - Delle Site, Luigi T1 - Chemical potential of liquids and mixtures via Adaptive Resolution Simulation N2 - We employ the adaptive resolution approach AdResS, in its recently developed Grand Canonicallike version (GC-AdResS) [Wang et al. Phys.Rev.X 3, 011018 (2013)], to calculate the excess chemical potential, $μ^{ex}$, of various liquids and mixtures. We compare our results with those obtained from full atomistic simulations using the technique of thermodynamic integration and show a satisfactory agreement. In GC-AdResS the procedure to calculate $μ^{ex}$ corresponds to the process of standard initial equilibration of the system; this implies that, independently of the specific aim of the study, $μ^{ex}$, for each molecular species, is automatically calculated every time a GC-AdResS simulation is performed. T3 - ZIB-Report - 14-25 KW - Coarse graining KW - adaptive resolution KW - molecular dynamics KW - chemical potential Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50972 SN - 1438-0064 ER -