## 68M10 Network design and communication [See also 68R10, 90B18]

### Refine

#### Document Type

- ZIB-Report (11)
- Doctoral Thesis (1)

#### Language

- English (12)

#### Has Fulltext

- yes (12)

#### Is part of the Bibliography

- no (12)

#### Keywords

- routing (4)
- mixed-integer programming (3)
- survivable network design (3)
- branch-and-cut algorithm (2)
- complexity (2)
- integer programming (2)
- network design (2)
- Branch-and-cut-and-price (1)
- Dimensionierung (1)
- Hardware Configuration (1)

#### Institute

Telecommunication transport networks consist of a stack of technologically different subnetworks, so-called layers, which are strongly interdependent. For example, one layer may correspond to an Internet (IP) backbone network whose links are realized by lightpath connections in an underlying optical fiber layer. To ensure that the network can fulfill its task of routing all communication requests, the inter-layer dependencies have to be taken into account already in the planning phase of the network. This is particularly important with survivability constraints, where connections in one layer have to be protected against cable cuts or equipment failures in another layer. The traditional sequential planning approach where one layer is optimized after the other cannot properly take care of the inter-layer dependencies; this can only be achieved with an integrated planning of several network layers at the same time. This thesis provides mathematical models and algorithmic techniques for the integrated optimization of two network layers with survivability constraints. We describe a multi-layer network design problem which occurs in various technologies, and model it mathematically using mixed-integer programming (MIP) formulations. The presented models cover many important practical side constraints from different technological contexts. In contrast to previous models from the literature, they can be used to design large two-layer networks with survivability requirements. We discuss modeling alternatives for various aspects of a multi-layer network and compare different routing formulations under multi-layer survivability constraints. We solve our models using a branch-and-cut-and-price approach with various problemspecific enhancements. This includes a presolving technique based on linear programming to reduce the problem size, combinatorial and sub-MIP-based primal heuristics to compute feasible network configurations, cutting planes which take the multi-layer survivability constraints into account to improve the lower bound on the optimal network cost, and column generation to generate flow variables dynamically during the algorithm. We develop techniques to speed up computations in a Benders decomposition approach and compare this approach to the standard formulation with a single MIP. We use the developed techniques to design large survivable two-layer networks by means of linear and integer programming methods. On realistic test instances with up to 67 network nodes and survivability constraints, we investigate the algorithmic impact of our techniques and show how to use them to compute good network configurations with quality guarantees. Most of the smaller test instances with up to 17 nodes can be solved to near-optimality. Moreover, we can compute feasible solutions and dual bounds even for large networks with survivability constraints, which has not been possible before.

This survey concerns optimization problems arising in the design of survivable communication networks. It turns out that such problems can be modeled in a natural way as non-compact linear programming formulations based on multicommodity flow network models. These non-compact formulations involve an exponential number of path flow variables, and therefore require column generation to be solved to optimality. We consider several path-based survivability mechanisms and present results, both known and new, on the complexity of the corresponding column generation problems (called the pricing problems). We discuss results for the case of the single link (or node) failures scenarios, and extend the considerations to multiple link failures. Further, we classify the design problems corresponding to different survivability mechanisms according to the structure of their pricing problem. Finally, we show that almost all encountered pricing problems are hard to solve for scenarios admitting multiple failures.

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints into account, including node hardware, several bitrates, and survivability against single physical node or link failures. This model is solved using a branch-and-cut approach with problem-specific preprocessing and cutting planes based on either of the two layers. On several realistic two-layer planning scenarios, we show that these cutting planes are still useful in the multi-layer context, helping to increase the dual bound and to reduce the optimality gaps.

This report combines the contributions to INOC 2005 (Wessälly et al., 2005) and DRCN 2005 (Gruber et al., 2005). A new integer linear programming model for the end-to-end survivability concept deman d-wise shared protection (DSP) is presented. DSP is based on the idea that backup capacity is dedicated to a particular demand, but shared within a demand. It combines advantages of dedicated and shared protection: It is more cost-efficient than dedicated protection and operationally easier than shared protection. In a previous model for DSP, the number of working and backup paths to be configured for a particular demand has been an input parameter; in the more general model for DSP investigated in this paper, this value is part of the decisions to take. To use the new DSP model algorithmically, we suggest a branch-and-cut approach which employs a column generation procedure to deal with the exponential number of routing variables. A computational study to compare the new resilience mechanism DSP with dedicated and shared path protection is performed. The results for five realistic network planning scenarios reveal that the best solutions for DSP are on average 15\% percent better than the corresponding 1+1 dedicated path protection solutions, and only 15\% percent worse than shared path protection.

We present an integer linear programming model for the design of multi-layer telecommunication networks. The formulation integrates hardware, capacity, routing, and grooming decisions in \emph{any} n umber of network layers. Practical hardware restrictions and cost can accurately be taken into account for technologies based on connection-oriented routing protocols.

We investigate the impact of hop-limited routing paths on the total cost of a telecommunication network. For different survivability settings (dedicated protection, link and path restoration), the optimal network cost without restrictions on the admissible path set is compared to the results obtained with two strategies to impose hop limits on routing paths. In a thorough computational study on optimal solutions for nine real-world based problem instances, we show that hop limits should be avoided if the technology allows it and network cost is a major planning issue. In this case, column generation should be employed to deal with all routing paths. If hop-limits are required, these should be defined for each demand individually and as large as possible.

In this article, we present a mathematical model and an algorithm to support one of the central strategic planning decisions of network operators: How to organize a large number of locations into a hierarchical network? We propose a solution approach that is based on mixed-integer programming and Lagrangian relaxation techniques. As major advantage, our approach provides not only solutions but also worst-case quality guarantees. Real-world scenarios with more than 750 locations have been solved within 30 minutes to less than 1\% off optimality.

We suggest a new model for the design of telecommunication networks which integrates decisions about the topology, configuration of the switching hardware, link dimensioning, and protected routing of communication demands. Applying the branch-and-cut-algorithm implemented in our network planning and optimization tool DISCNET, we demonstrate that real-world based network planning instances of such an enhanced model can be solved.

Finding conflict-free wavelength assignments with a minimum number of required conversions for a routing of the lightpaths is one of the important tasks within the design of all-optical networks. We consider this problem in multi-fiber networks with different types of WDM systems. We give a detailed description of the problem and derive its theoretical complexity. For practical application, we propose several sequential algorithms to compute appropriate wavelength assignments. We also perform computational experiments to evaluate their performance. For the iterative algorithms, we identify characteristic patterns of progression. Two of these algorithms qualify for application in practice.

In this paper, a new shared protection mechanism for meshed optical networks is presented. Significant network design cost reductions can be achieved in comparison to the well-known 1+1 protection scheme. Demand-wise Shared Protection (DSP) bases on the diversification of demand routings and exploits the network connectivity to restrict the number of backup lightpaths needed to provide the desired level of prorection. Computational experiments approve the benefits of the concept DSP for cost efficient optical network designs.