## 68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section -04 in that area)

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (43)
- Master's Thesis (5)
- Software (4)
- Article (1)
- Bachelor's Thesis (1)

#### Keywords

- Ubiquity Generator Framework (3)
- Computational Diagnosis (2)
- Convex Optimization (2)
- Discrete optimization (2)
- Knee Osteoarthritis (2)
- Lattice problem (2)
- Lattice-based cryptography (2)
- MSM (2)
- Machine Learning (2)
- Parallel algorithms (2)

#### Institute

- Mathematical Optimization (23)
- Visual and Data-centric Computing (13)
- Visual Data Analysis (11)
- Mathematics of Telecommunication (7)
- Applied Algorithmic Intelligence Methods (5)
- Numerical Mathematics (5)
- Distributed Algorithms and Supercomputing (4)
- Mathematical Optimization Methods (3)
- Computational Molecular Design (2)
- Digital Data and Information for Society, Science, and Culture (2)

大規模二次割当問題への挑戦
(2022)

Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates.

UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization.
UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version.
v1.0.0: new documentation and cmake, generalization of ug framework, implementation of selfsplitrampup for fiber- and parascip, better memory and time limit handling.

Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings.

For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments.

UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization.
UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. For MIP solving, ParaSCIP and FiberSCIP are well debugged and should be stable. For MINLP solving, they are relatively stable, but not as thoroughly debugged. This release version should handle branch-and-cut approaches where subproblems are defined by variable bounds and also by constrains for ug[SCIP,*] ParaSCIP and FiberSCIP). Therefore, problem classes other than MIP or MINLP can be handled, but they have not been tested yet.
v0.9.1: Update orbitope cip files.

This work presents a fully automated pipeline, centered around a deep neural network, as well as a method to train that network in an efficient manner, that enables accurate detection of lesions in meniscal anatomical subregions. The network architecture is based on a transformer encoder/decoder. It is trained on DESS and tuned on IW TSE 3D MRI scans sourced from the Osteoarthritis Initiative. Furthermore, it is trained in a multilabel, and multitask fashion, using an auxiliary detection head. The former enables implicit localisation
of meniscal defects, that to the best of my knowledge, has not yet been reported elsewhere. The latter enables efficient learning on the entire 3D MRI volume. Thus, the proposed method does not require any expert knowledge at inference. Aggregated inference results from two datasets resulted in an overall AUCROC result of 0.90, 0.91 and 0.93 for meniscal lesion detection anywhere in the knee, in medial and in lateral menisci respectively. These results compare very well to the related work, even though only a fraction of the data has been utilized. Clinical applicability and benefit is yet to be determined.

Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.