## 65C20 Models, numerical methods [See also 68U20]

### Refine

#### Document Type

- ZIB-Report (3)
- Habilitation (1)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Keywords

#### Institute

- ZIB Allgemein (4)

One important step in the fabrication of silicon-based integrated circuits is the creation of semiconducting areas by diffusion of dopant impurities into silicon. Complex models have been developed to investigate the redistribution of dopants and point defects. In general, numerical analysis of the resulting PDEs is the central tool to assess the modelling process. We present an adaptive approach which is able to judge the quality of the numerical approximation and which provides an automatic mesh improvement. Using linearly implicit methods in time and multilevel finite elements in space, we are able to integrate efficiently the arising reaction-drift-diffusion equations with high accuracy. Two different diffusion processes of practical interest are simulated.

This series of lectures has been given to a class of mathematics postdocs at a European summer school on Computational Mathematics Driven by Industrial Applications in Martina Franca, Italy (organized by CIME). It deals with a variety of challenging real life problems selected from clinical cancer therapy, communication technology, polymer production, and pharmaceutical drug design. All of these problems from rather diverse application areas share two common features: (a) they have been modelled by various differential equations -- elliptic, parabolic, or SchrÃ¶dinger--type partial differential equations, countable ordinary diffential equations, or Hamiltonian systems, (b) their numerical solution has turned out to be real challenge to computational mathematics.

Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications
(1999)

This monograph has been written to illustrate the interlocking of theory, algorithm, and application in developing solution techniques for complex PDE systems. A deep theoretical understanding is necessary to produce a powerful idea leading to a successful algorithm. Efficient and robust implementation is the key to make the algorithm perform satisfactorily. The extra insight obtained by solving real--life problems brings out the structure of the method more clearly and suggests often ways to improve the numerical algorithm. It is my intention to impart the beauty and complexity found in both the theoretical investigation of the adaptive algorithm proposed here, i.e., the coupling of Rosenbrock methods in time and multilevel finite elements in space, and its realization. I hope that this method will find many more interesting applications.

The paper supplies an alternative derivation of the exact boundary conditions needed for the solution of time-harmonic acoustic scattering problems modeled by the Helmholtz equation. The main idea is to consider the exterior domain problem as an initial value problem with initial data given on the boundary of a disc or sphere. The solution of the exterior domain problem is obtained via Laplace transformation techniques, where the asymptotic Sommerfeld radiation condition is reformulated accordingly.