## 65-XX NUMERICAL ANALYSIS

### Refine

#### Document Type

- ZIB-Report (26)
- Master's Thesis (2)
- Doctoral Thesis (1)

#### Keywords

- finite element method (5)
- reduced basis method (4)
- optimal control (3)
- rigorous optical modeling (3)
- Algebraic multigrid (2)
- Automatic Differentiation (2)
- Lipschitz Continuity (2)
- Nonsmooth (2)
- PDE (2)
- Piecewise Linearization (2)

#### Institute

- Numerical Mathematics (21)
- Computational Medicine (6)
- Computational Nano Optics (5)
- Computational Systems biology (4)
- Mathematical Optimization (4)
- Energy Network Optimization (3)
- Computational Molecular Design (2)
- Visual Data Analysis (2)
- ZIB Allgemein (2)
- Image Analysis in Biology and Materials Science (1)

In this article we analyze a generalized trapezoidal rule for initial value problems with piecewise smooth right hand side F:IR^n -> IR^n.
When applied to such a problem, the classical trapezoidal rule suffers from a loss of accuracy if the solution trajectory intersects a non-differentiability of F. In such a situation the investigated generalized trapezoidal rule achieves a higher convergence order than the classical method. While the asymptotic behavior of the generalized method was investigated in a previous work, in the present article we develop the algorithmic structure for efficient implementation strategies
and estimate the actual computational cost of the latter.
Moreover, energy preservation of the generalized trapezoidal rule is proved for Hamiltonian systems with piecewise linear right hand side.

We consider the use of randomised forward models and log-likelihoods within the Bayesian approach to inverse problems. Such random approximations to the exact forward model or log-likelihood arise naturally when a computationally expensive model is approximated using a cheaper stochastic surrogate, as in Gaussian process emulation (kriging), or in the field of probabilistic numerical methods. We show that the Hellinger distance between the exact and approximate Bayesian posteriors is bounded by moments of the difference between the true and approximate log-likelihoods. Example applications of these stability results are given for randomised misfit models in large data applications and the probabilistic solution of ordinary differential equations.

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 % faster overall and 23 % faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.

In this article we analyze a generalized trapezoidal rule for initial value problems with piecewise smooth right hand side \(F:R^n \to R^n\) based on a generalization of algorithmic differentiation. When applied to such a problem, the classical trapezoidal rule suffers from a loss of accuracy if the solution trajectory intersects a nondifferentiability of \(F\). The advantage of the proposed generalized trapezoidal rule is threefold: Firstly, we can achieve a higher convergence order than with the classical method. Moreover, the method is energy preserving for piecewise linear Hamiltonian systems. Finally, in analogy to the classical case we derive a third order interpolation polynomial for the numerical trajectory. In the smooth case the generalized rule reduces to the classical one. Hence, it is a proper extension of the classical theory. An error estimator is given and numerical results are presented.

An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates
(2017)

In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities.

It is shown how piecewise differentiable functions \(F: R^n → R^m\) that are defined by evaluation programs can be approximated locally by a piecewise linear model based on a pair of sample points x̌ and x̂. We show that the discrepancy between function and model at any point x is of the bilinear order O(||x − x̌|| ||x − x̂||). This is a little surprising since x ∈ R^n may vary over the whole Euclidean space, and we utilize only two function samples F̌ = F(x̌) and F̂ = F(x̂), as well as the intermediates computed during their evaluation. As an application of the piecewise linearization procedure we devise a generalized Newton’s method based on successive piecewise linearization and prove for it sufficient conditions for convergence and convergence rates equaling those of semismooth Newton. We conclude with the derivation of formulas for the numerically stable implementation of the aforedeveloped piecewise linearization methods.

In many applications one is interested to compute transition probabilities of a Markov chain.
This can be achieved by using Monte Carlo methods with local or global sampling points.
In this article, we analyze the error by the difference in the $L^2$ norm between the true transition probabilities and the approximation
achieved through a Monte Carlo method.
We give a formula for the error for Markov chains with locally computed sampling points. Further, in the case of reversible Markov chains, we will deduce a formula for the error when sampling points are computed globally.
We will see that in both cases the error itself can be approximated with Monte Carlo methods.
As a consequence of the result, we will derive surprising properties of reversible Markov chains.

This article extends the framework of Bayesian inverse problems in infinite-dimensional parameter spaces, as advocated by Stuart (Acta Numer. 19:451–559, 2010) and others, to the case of a heavy-tailed prior measure in the family of stable distributions, such as an infinite-dimensional Cauchy distribution, for which polynomial moments are infinite or undefined. It is shown that analogues of the Karhunen–Loève expansion for square-integrable random variables can be used to sample such measures. Furthermore, under weaker regularity assumptions than those used to date, the Bayesian posterior measure is shown to depend Lipschitz continuously in the Hellinger metric upon perturbations of the misfit function and observed data.

Traditionally, Lagrangian fields such as finite-time Lyapunov exponents (FTLE)
are precomputed on a discrete grid and are ray casted afterwards. This, however,
introduces both grid discretization errors and sampling errors during ray marching.
In this work, we apply a progressive, view-dependent Monte Carlo-based approach
for the visualization of such Lagrangian fields in time-dependent flows. Our ap-
proach avoids grid discretization and ray marching errors completely, is consistent,
and has a low memory consumption. The system provides noisy previews that con-
verge over time to an accurate high-quality visualization. Compared to traditional
approaches, the proposed system avoids explicitly predefined fieldline seeding
structures, and uses a Monte Carlo sampling strategy named Woodcock tracking
to distribute samples along the view ray. An acceleration of this sampling strategy
requires local upper bounds for the FTLE values, which we progressively acquire
during the rendering. Our approach is tailored for high-quality visualizations of
complex FTLE fields and is guaranteed to faithfully represent detailed ridge surface
structures as indicators for Lagrangian coherent structures (LCS). We demonstrate
the effectiveness of our approach by using a set of analytic test cases and real-world numerical simulations.

One of the main goals of mathematical modelling in systems biology related to medical applications is to obtain patient-specific parameterisations and model predictions.
In clinical practice, however, the number of available measurements for single patients is usually limited due to time and cost restrictions. This hampers the process of making patient-specific predictions about the outcome of a treatment. On the other hand, data are often available for many patients, in particular if extensive clinical studies have been performed. Using these population data, we propose an iterative algorithm for contructing an informative prior distribution, which then serves as the basis for computing patient-specific posteriors and obtaining individual predictions. We demonsrate the performance of our method by applying it to a low-dimensional parameter estimation problem in a toy model as well as to a high-dimensional ODE model of the human menstrual cycle, which represents a typical example from systems biology modelling.