## 62H30 Classification and discrimination; cluster analysis [See also 68T10]

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (20)
- Doctoral Thesis (1)
- Habilitation (1)

#### Language

- English (22)

#### Has Fulltext

- yes (22)

#### Is part of the Bibliography

- no (22)

#### Keywords

- cluster analysis (8)
- Perron cluster analysis (4)
- Self-Organizing Maps (4)
- metastability (3)
- Clustering (2)
- Model Selection, (2)
- Molecular Dynamics (2)
- Networks (2)
- Stochastic Block Model (2)
- Variational Bayes EM (2)

#### Institute

We propose the Blockloading algorithm for the clustering of large and complex graphs with tens of thousands of vertices according to a Stochastic Block Model (SBM). Blockloading is based on generalized Variational Bayesian EM (VBEM) schemes and works for weighted and unweighted graphs. Existing Variational (Bayesian) EM methods have to consider each possible number of clusters sepa- rately to determine the optimal number of clusters and are prone to converge to local optima making multiple restarts necessary. These factors impose a severe restriction on the size and complexity of graphs these methods can handle. In con- trast, the Blockloading algorithm restricts restarts to subnetworks in a way that provides error correction of an existing cluster assignment. The number of clusters need not be specified in advance because Blockloading will return it as a result. We show that Blockloading outperforms all other variational methods regarding reliability of the results and computational efficiency.

Real World networks often exhibit a significant number of vertices which are sparsely and irregularly connected to other vertices in the network. For clustering theses networks with a model based algorithm, we propose the Stochastic Block Model with Irrelevant Vertices (SBMIV) for weighted net- works. We propose an original Variational Bayesian Expectation Maximiza- tion inference algorithm for the SBMIV which is an advanced version of our Blockloading algorithm for the Stochastic Block Model. We introduce a model selection criterion for the number of clusters of the SBMIV which is based on the lower variational bound of the model likelihood. We propose a fully Bayesian inference process, based on plausible informative priors, which is independent of other algorithms for preprocessing start values for the cluster assignment of vertices. Our inference methods allow for a multi level identification of irrelevant vertices which are hard to cluster reliably ac- cording to the SBM. We demonstrate that our methods improve on the normal Stochastic Block model by applying it to to Earthquake Networks which are an example of networks with a large number of sparsely and irregularly con- nected vertices.

Whenever the invariant stationary density of metastable dynamical systems decomposes into almost invariant partial densities, its computation as eigenvector of some transition probability matrix is an ill-conditioned problem. In order to avoid this computational difficulty, we suggest to apply an aggregation/disaggregation method which only addresses wellconditioned sub-problems and thus results in a stable algorithm. In contrast to existing methods, the aggregation step is done via a sampling algorithm which covers only small patches of the sampling space. Finally, the theoretical analysis is illustrated by two biomolecular examples.

The problem of clustering data can be formulated as a graph partitioning problem. Spectral methods for obtaining optimal solutions have reveceived a lot of attention recently. We describe Perron Cluster Cluster Analysis (PCCA) and, for the first time, establish a connection to spectral graph partitioning. We show that in our approach a clustering can be efficiently computed using a simple linear map of the eigenvector data. To deal with the prevalent problem of noisy and possibly overlapping data we introduce the min Chi indicator which helps in selecting the number of clusters and confirming the existence of a partition of the data. This gives a non-probabilistic alternative to statistical mixture-models. We close with showing favorable results on the analysis of gene expressi on data for two different cancer types.

This paper introduces a new algorithm of conformational analysis based on mesh-free methods as described in [M. Weber. Mehless methods in Conformation Dynamics.(2005)]. The adaptive decomposition of the conformational space by softly limiting functions avoids trapping effects and allows adaptive refinement strategies. These properties of the algorithm makes ZIBgridfree particularly suitable for the complete exploration of high-dimensional conformational space. The adaptive control of the algorithm benefits from the tight integration of molecular simulation and conformational analysis. An emphasized part of the analysis is the Robust Perron Cluster Analysis (PCCA+) based on the work of Peter Deuflhard and Marcus Weber. PCCA+ supports an almost-characteristic cluster definition with an outstanding mapping of transition states. The outcome is expressed by the metastable sets of conformations, their thermodynamic weights and flexibility.

Recently, a novel approach for the analysis of molecular dynamics on the basis of a transfer operator has been introduced. Therein conformations are considered to be disjoint metastable clusters within position space of a molecule. These clusters are defined by almost invariant characteristic functions that can be computed via {\em Perron Cluster} analysis. The present paper suggests to replace crisp clusters with {\em fuzzy} clusters, i.e. to replace characteristic functions with membership functions. This allows a more sufficient characterization of transiton states between different confor conformations and therefore leads to a better understanding of molecular dynamics. Fur thermore, an indicator for the uniqueness of metastable fuzzy clusters and a fast algorithm for the computation of these clusters are described. Numerical examples are included.

The problem of clustering data can often be transformed into the problem of finding a hidden block diagonal structure in a stochastic matrix. Deuflhard et al. have proposed an algorithm that state s the number $k$ of clusters and uses the sign structure of $k$ eigenvectors of the stochastic matrix to solve the cluster problem. Recently Weber and Galliat discovered that this system of eigenvectors can easily be transformed into a system of $k$ membership functions or soft characteristic functions describing the clusters. In this article we explain the corresponding cluster algorithm and point out the underlying theory. By means of numerical examples we explain how the grade of membership can be interpreted.

In this paper we interpret clustering as a mapping of data into a simplex. If the data itself has simplicial struture this mapping becomes linear. Spectral analysis is an often used tool for clustering data. We will show that corresponding singular vectors or eigenvectors comprise simplicial structure. Therefore they lead to a cluster algorithm, which consists of a simple linear mapping. An example for this kind of algorithms is the Perron cluster analysis (PCCA). We have applied it in practice to identify metastable sets of molecular dynamical systems. In contrast to other algorithms, this kind of approach provides an a priori criterion to determine the number of clusters. In this paper we extend the ideas to more general problems like clustering of bipartite graphs.

For the treatment of equilibrated molecular systems in a heat bath we propose a transition state theory that is based on conformation dynamics. In general, a set-based discretization of a Markov operator ${\cal P}^\tau$ does not preserve the Markov property. In this article, we propose a discretization method which is based on a Galerkin approach. This discretization method preserves the Markov property of the operator and can be interpreted as a decomposition of the state space into (fuzzy) sets. The conformation-based transition state theory presented here can be seen as a first step in conformation dynamics towards the computation of essential dynamical properties of molecular systems without time-consuming molecular dynamics simulations.

Supercomputers can simulate complex molecular systems. However, there is a very large gap between the fastest oscillations of covalent bonds of a molecule and the time-scale of the dominant processes. In order to extract the dominant time-scales and to identify the dominant processes, a clustering of information is needed. This thesis shows that only the subspace-based Robust Perron Cluster Analysis (PCCA+) can solve this problem correctly by the construction of a Markov State Model. PCCA+ allows for time-extrapolation in molecular kinetics. This thesis shows the difference between molecular dynamics and molecular kinetics. Only in the molecular kinetics framework a definition of transition rates is possible. In this context, the existence of an infinitesimal generator of the dynamical processes is discussed. If the existence is assumed, the Theorem of Gauß can be applied in order to compute transition rates efficiently. Molecular dynamics, however, is not able to provide a suitable statistical basis for the determination of the transition pattern.