## 60J60 Diffusion processes [See also 58J65]

### Refine

#### Document Type

- ZIB-Report (6)

#### Language

- English (6)

#### Has Fulltext

- yes (6)

#### Is part of the Bibliography

- no (6)

#### Keywords

- Markov state model (2)
- canonical ensemble (2)
- metastability (2)
- non-equilibrium molecular dynamics (2)
- Donsker-Varadhan principle (1)
- Fokker--Planck equation (1)
- Ha (1)
- Importance sampling (1)
- Markov chain (1)
- Markov process (1)

#### Institute

- Numerical Mathematics (4)
- ZIB Allgemein (2)

The article surveys and extends variational formulations of the thermodynamic free
energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations. The implications of the different variational formulations for designing efficient stochastic optimization and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated.

We investigate metastable dynamical systems subject to non-stationary forcing as they appear in molecular dynamics for systems driven by external fields. We show, that if the strength of the forcing is inversely proportional to the length of the slow metastable time scales of the unforced system, then the effective behavior of the forced system on slow time scales can be described by a low-dimensional reduced master equation. Our construction is explicit and uses the multiscale perturbation expansion method called two-timing, or method of multiple scales. The reduced master equation—a Markov state model—can be assembled by constructing two equilibrium Markov state models; one for the unforced system, and one for a slightly perturbed one.

Many interesting rare events in molecular systems like ligand association, protein folding or con- formational changes happen on timescales that often are not accessible by direct numerical simulation. Therefore rare event approximation approaches like interface sampling, Markov state model building or advanced reaction coordinate based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches: How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so they also allow for understanding deep connections between the different approaches.

We utilize the theory of coherent sets to build Markov state models for non- equilibrium molecular dynamical systems. Unlike for systems in equilibrium, “meta- stable” sets in the non-equilibrium case may move as time evolves. We formalize this concept by relying on the theory of coherent sets, based on this we derive finite-time non-stationary Markov state models, and illustrate the concept and its main differences to equilibrium Markov state modeling on simple, one-dimensional examples.

The article surveys the development of novel mathematical concepts and algorithmic approaches based thereon in view of their possible applicability to biomolecular design. Both a first deterministic approach, based on the Frobenius-Perron operator corresponding to the flow of the Hamiltonian dynamics, and later stochastic approaches, based on a spatial Markov operator or on Langevin dynamics, can be subsumed under the unified mathematical roof of the transfer operator approach to effective dynamics of molecular systems. The key idea of constructing specific transfer operators especially taylored for the purpose of conformational dynamics appears as the red line throughout the paper. Different steps of the algorithm are exemplified by a trinucleotide molecular system as a small representative of possible RNA drug molecules.

The function of many important biomolecules is related to their dynamic properties and their ability to switch between different {\em conformations}, which are understood as {\em almost invariant} or {\em metastable} subsets of the positional state space of the system. Recently, the present authors and their coworkers presented a novel algorithmic scheme for the direct numerical determination of such metastable subsets and the transition probability between them. Although being different in most aspects, this method exploits the same basic idea as {\sc Dellnitz} and {\sc Junge} in their approach to almost invariance in discrete dynamical systems: the almost invariant sets are computed via certain eigenvectors of the Markov operators associated with the dynamical behavior. In the present article we analyze the application of this approach to (high--friction) Langevin models describing the dynamical behavior of molecular systems coupled to a heat bath. We will see that this can be related to theoretical results for (symmetric) semigroups of Markov operators going back to {\sc Davies}. We concentrate on a comparison of our approach in respect to random perturbations of dynamical systems.