## 60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX)

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (13)
- Article (1)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Language

- English (16)

#### Is part of the Bibliography

- no (16)

#### Keywords

- Markov State Models (3)
- Mixed-Integer Programming (3)
- NESS (3)
- Non-reversible Markov Processes (3)
- 2-photon microscopy (1)
- Adaptive Importance Sampling (1)
- Bayesian inverse problems (1)
- Girsanov (1)
- Karhunen–Loève expansion (1)
- Metadynamics (1)

#### Institute

- Numerical Mathematics (9)
- Mathematical Optimization (7)
- Computational Molecular Design (3)
- Mathematical Optimization Methods (2)
- Modeling and Simulation of Complex Processes (2)
- Visual Data Analysis (2)
- Visual and Data-centric Computing (2)
- Image Analysis in Biology and Materials Science (1)
- Uncertainty Quantification (1)

Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact ﬁrst- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the ﬁltered signal’s second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to eﬃciently compare diﬀerent spatial coarse graining approaches for a speciﬁc model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a ﬁltered stochastic signal.

Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a 'serial synapse formation' model, where at any time point only a single 'synaptogenic' filopodium suppresses the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization and reduced synapse formation, which is sufficient to cause the destabilization of entire axon terminals. Our model provides a filopodial 'winner-takes-all' mechanism that ensures the formation of an appropriate number of synapses.

The topic of this thesis is the examination of an optimization model
which stems from the clustering process of non-reversible markov processes.
We introduce the cycle clustering problem und formulate it as a mixed
integer program (MIP).
We prove that this problem is N P-hard and discuss polytopal aspects
such as facets and dimension. The focus of this thesis is the development of
solving methods for this clustering problem. We develop problem specific
primal heuristics, as well as separation methods and an approximation
algorithm. These techniques are implemented in practice as an application
for the MIP solver SCIP.
Our computational experiments show that these solving methods result
in an average speedup of ×4 compared to generic solvers and that our
application is able to solve more instances to optimality within the given
time limit of one hour.

Some connections between importance sampling and enhanced sampling methods in molecular dynamics
(2017)

Enhanced sampling methods play an important role in molecular dynamics, because they enable the collection of better statistics of rare events that are important in many physical phenomena. We show that many enhanced sampling methods can be viewed as methods for performing importance sampling, by identifying important correspondences between the language of molecular dynamics and the language of probability theory. We illustrate these connections by highlighting the similarities between the rare event simulation method of Hartmann and Schütte (J. Stat. Mech. Theor. Exp., 2012), and the enhanced sampling method of Valsson and Parrinello (Phys. Rev. Lett. 113, 090601). We show that the idea of changing a probability measure is fundamental to both enhanced sampling and importance sampling.

An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates
(2017)

In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities.

In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.

Given a sequence of Cauchy-distributed random variables defined by a sequence of location parameters and a sequence of scale parameters, we consider another sequence of random variables that is obtained by perturbing the location or scale parameter sequences. Using a result of Kakutani on equivalence of infinite product measures, we provide sufficient conditions for the equivalence of laws of the two sequences.

This article extends the framework of Bayesian inverse problems in infinite-dimensional parameter spaces, as advocated by Stuart (Acta Numer. 19:451–559, 2010) and others, to the case of a heavy-tailed prior measure in the family of stable distributions, such as an infinite-dimensional Cauchy distribution, for which polynomial moments are infinite or undefined. It is shown that analogues of the Karhunen–Loève expansion for square-integrable random variables can be used to sample such measures. Furthermore, under weaker regularity assumptions than those used to date, the Bayesian posterior measure is shown to depend Lipschitz continuously in the Hellinger metric upon perturbations of the misfit function and observed data.