## 60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX)

### Refine

#### Document Type

- ZIB-Report (11)
- Article (1)
- Master's Thesis (1)

#### Keywords

- Markov State Models (3)
- Mixed-Integer Programming (3)
- NESS (3)
- Non-reversible Markov Processes (3)
- Adaptive Importance Sampling (1)
- Bayesian inverse problems (1)
- Girsanov (1)
- Karhunen–Loève expansion (1)
- Metadynamics (1)
- Metastability (1)

The topic of this thesis is the examination of an optimization model
which stems from the clustering process of non-reversible markov processes.
We introduce the cycle clustering problem und formulate it as a mixed
integer program (MIP).
We prove that this problem is N P-hard and discuss polytopal aspects
such as facets and dimension. The focus of this thesis is the development of
solving methods for this clustering problem. We develop problem specific
primal heuristics, as well as separation methods and an approximation
algorithm. These techniques are implemented in practice as an application
for the MIP solver SCIP.
Our computational experiments show that these solving methods result
in an average speedup of ×4 compared to generic solvers and that our
application is able to solve more instances to optimality within the given
time limit of one hour.

Some connections between importance sampling and enhanced sampling methods in molecular dynamics
(2017)

Enhanced sampling methods play an important role in molecular dynamics, because they enable the collection of better statistics of rare events that are important in many physical phenomena. We show that many enhanced sampling methods can be viewed as methods for performing importance sampling, by identifying important correspondences between the language of molecular dynamics and the language of probability theory. We illustrate these connections by highlighting the similarities between the rare event simulation method of Hartmann and Schütte (J. Stat. Mech. Theor. Exp., 2012), and the enhanced sampling method of Valsson and Parrinello (Phys. Rev. Lett. 113, 090601). We show that the idea of changing a probability measure is fundamental to both enhanced sampling and importance sampling.

An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates
(2017)

In this article we propose an adaptive importance sampling scheme for dynamical quantities of high dimensional complex systems which are metastable. The main idea of this article is to combine a method coming from Molecular Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis, Girsanov's theorem. The proposed algorithm has two advantages compared to a standard estimator of dynamic quantities: firstly, it is possible to produce estimators with a lower variance and, secondly, we can speed up the sampling. One of the main problems for building importance sampling schemes for metastable systems is to find the metastable region in order to manipulate the potential accordingly. Our method circumvents this problem by using an assimilated version of the Metadynamics algorithm and thus creates a non-equilibrium dynamics which is used to sample the equilibrium quantities.

In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.

Given a sequence of Cauchy-distributed random variables defined by a sequence of location parameters and a sequence of scale parameters, we consider another sequence of random variables that is obtained by perturbing the location or scale parameter sequences. Using a result of Kakutani on equivalence of infinite product measures, we provide sufficient conditions for the equivalence of laws of the two sequences.

This article extends the framework of Bayesian inverse problems in infinite-dimensional parameter spaces, as advocated by Stuart (Acta Numer. 19:451–559, 2010) and others, to the case of a heavy-tailed prior measure in the family of stable distributions, such as an infinite-dimensional Cauchy distribution, for which polynomial moments are infinite or undefined. It is shown that analogues of the Karhunen–Loève expansion for square-integrable random variables can be used to sample such measures. Furthermore, under weaker regularity assumptions than those used to date, the Bayesian posterior measure is shown to depend Lipschitz continuously in the Hellinger metric upon perturbations of the misfit function and observed data.

In this article we present a new idea for approximating exit rates for diffusion processes living in a craggy landscape. We are especially interested in the exit rates of a process living in a metastable regions. Due to the fact that Monte Carlo simulations perform quite poor and are very computational expensive in this setting we create several similar situations with a smoothed potential. For this we introduce a new parameter $\lambda \in [0,1]$ ($\lambda = 1$ very smoothed potential, $\lambda=0$ original potential) into the potential which controls the influence the smoothing. We then sample the exit rate for different parameters $\lambda$ the exit rate from a given region. Due to the fact that $\lambda$ is connected to the exit rate we can use this dependency to approximate the real exit rate. The method can be seen as something between hyperdynamics and temperature accelerated MC.

Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts’ opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.

This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for
the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic
comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic
picture than competitive analysis and explains the behavior observed in simulations.