## G. Mathematics of Computing

### Refine

#### Year of publication

#### Document Type

- ZIB-Report (44)
- Master's Thesis (6)
- Doctoral Thesis (1)

#### Keywords

- Mixed Integer Programming (5)
- Periodic Timetabling (3)
- MINLP (2)
- PDE (2)
- Periodic Event Scheduling Problem (2)
- SDP (2)
- Ubiquity Generator Framework (2)
- adaptive Newton (2)
- finite element method (2)
- large-scale integer programming (2)

#### Institute

- Mathematical Optimization (33)
- Numerical Mathematics (10)
- Network Optimization (6)
- Mathematical Optimization Methods (5)
- Computational Medicine (3)
- Computational Molecular Design (3)
- Computational Nano Optics (3)
- Applied Algorithmic Intelligence Methods (2)
- Computational Systems Biology (1)
- Energy Network Optimization (1)

大規模二次割当問題への挑戦
(2022)

For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments.

Balanced separators are node sets that split the graph into size bounded components. They find applications in different theoretical and practical problems. In this paper we discuss how to find a minimum set of balanced separators in node weighted graphs. Our contribution is a new and exact algorithm that solves Minimum Balanced Separators by a sequence of Hitting Set problems. The only other exact method appears to be a mixed-integer program (MIP) for the edge weighted case. We adapt this model to node weighted graphs and compare it to our approach on a set of instances, resembling transit networks. It shows that our algorithm is far superior on almost all test instances.

Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance \texttt{R1L1} of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds.

We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport.

The covering of a graph with (possibly disjoint) connected subgraphs is a fundamental problem in graph theory. In this paper, we study a version to cover a graph's vertices by connected subgraphs subject to lower and upper weight bounds, and propose a column generation approach to dynamically generate feasible and promising subgraphs. Our focus is on the solution of the pricing problem which turns out to be a variant of the NP-hard Maximum Weight Connected Subgraph Problem. We compare different formulations to handle connectivity, and find that a single-commodity flow formulation performs best. This is notable since the respective literature seems to have dismissed this formulation. We improve it to a new coarse-to-fine flow formulation that is theoretically and computationally superior, especially for large instances with many vertices of degree 2 like highway networks, where it provides a speed-up factor of 10 over the non-flow-based formulations. We also propose a preprocessing method that exploits a median property of weight constrained subgraphs, a primal heuristic, and a local search heuristic. In an extensive computational study we evaluate the presented connectivity formulations on different classes of instances, and demonstrate the effectiveness of the proposed enhancements. Their speed-ups essentially multiply to an overall factor of 20. Overall, our approach allows the reliabe solution of instances with several hundreds of nodes in a few minutes. These findings are further corroborated in a comparison to existing districting models on a set of test instances from the literature.

We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib.

The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments.