## G.4 MATHEMATICAL SOFTWARE

### Refine

#### Keywords

#### Institute

Obtaining a sufficient sampling of conformational space is a common problem in molecular simulation. We present the implementation of an umbrella-like adaptive sampling approach based on function-based meshless discretization of conformational space that is compatible with state of the art molecular dynamics code and that integrates an eigenvector-based clustering approach for conformational analysis and the computation of inter-conformational transition rates. The approach is applied to three example systems, namely n-pentane, alanine dipeptide, and a small synthetic host-guest system, the latter two including explicitly modeled solvent.

Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice.

One of the essential components of a branch-and-bound based mixed-integer linear programming (MIP) solver is the branching rule. Strong branching is a method used by many state-of-the-art branching rules to select the variable to branch on. It precomputes the dual bounds of potential child nodes by solving auxiliary linear programs (LPs) and thereby helps to take good branching decisions that lead to a small search tree. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Domain propagation is a technique usually used at every node of the branch-and-bound tree to tighten the local domains of variables. Computational experiments on standard MIP instances indicate that our improved strong branching method significantly improves the quality of the predictions and causes almost no additional effort. For a full strong branching rule, we are able to obtain substantial reductions of the branch-and-bound tree size as well as the solving time. Moreover, also the state-of-the-art hybrid branching rule can be improved this way.
This paper extends previous work by the author published in the proceedings of the CPAIOR 2013.

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification of the objective function, right-hand side, and variable bounds. Exact computation is used to compute and store the exact representation of the transformed problems, while numeric computation is used for solving LPs. At all steps of the algorithm the LP bases encountered in the transformed problems correspond directly to LP bases in the original problem description.
We demonstrate that this algorithm is effective in practice for computing extended precision solutions and that this leads to direct improvement of the best known methods for solving LPs exactly over the rational numbers.

We present an exact rational solver for mixed-integer linear programming
that avoids the numerical inaccuracies inherent in the floating-point
computations used by existing software. This allows the solver to be used
for establishing theoretical results and in applications where correct
solutions are critical due to legal and financial consequences. Our solver
is a hybrid symbolic/numeric implementation of LP-based branch-and-bound,
using numerically-safe methods for all binding computations in the search
tree. Computing provably accurate solutions by dynamically choosing the
fastest of several safe dual bounding methods depending on the structure of
the instance, our exact solver is only moderately slower than an inexact
floating-point branch-and-bound solver. The software is incorporated into
the SCIP optimization framework, using the exact LP solver QSopt_ex and the
GMP arithmetic library. Computational results are presented for a suite of
test instances taken from the MIPLIB and Mittelmann collections.

We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.

The dynamics of ventricular fibrillation caused by irregular excitation is simulated in the frame of the monodomain model with an action potential model due to Aliev-Panfilov for a human 3D geometry. The numerical solution of this multiscale reaction-diffusion problem is attacked by algorithms which are fully adaptive in both space and time (code library {\sc Kardos}). The obtained results clearly demonstrate an accurate resolution of the cardiac potential during the excitation and the plateau phases (in the regular cycle) as well as after a reentrant excitation (in the irregular cycle).

Adaptive numerical methods in time and space are introduced and studied for linear poroelastic models in two and three space dimensions. We present equivalent models for linear poroelasticity and choose both the {\em displacement--pressure} and the {\em stress--pressure} formulation for our computations. Their discretizations are provided by means of linearly implicit schemes in time and linear finite elements in space. Our concept of adaptivity opens a way to a fast and reliable simulation of different loading cases defined by corresponding boundary conditions. We present some examples using our code {\sf Kardos} and show that the method works efficiently. In particular, it could be used in the simulation of some bone healing models.

Adaptive numerical methods in space and time are introduced and studied for multiscale cardiac reaction-diffusion models in three dimensions. The evolution of a complete heartbeat, from the excitation to the recovery phase, is simulated with both the anisotropic Bidomain and Monodomain models, coupled with either a variant of the simple FitzHugh-Nagumo model or the more complex phase-I Luo-Rudy ionic model. The simulations are performed with the {\sc kardos} library, that employs adaptive finite elements in space and adaptive linearly implicit methods in time. The numerical results show that this adaptive method successfully solves these complex cardiac reaction-diffusion models on three-dimensional domains of moderate sizes. By automatically adapting the spatial meshes and time steps to the proper scales in each phase of the heartbeat, the method accurately resolves the evolution of the intra- and extra-cellular potentials, gating variables and ion concentrations during the excitation, plateau and recovery phases.

Conflict analysis for infeasible subproblems is one of the key ingredients in modern SAT solvers to cope with large real-world instances. In contrast, it is common practice for today's mixed integer programming solvers to just discard infeasible subproblems and the information they reveal. In this paper we try to remedy this situation by generalizing the SAT infeasibility analysis to mixed integer programming. We present heuristics for branch-and-cut solvers to generate valid inequalities from the current infeasible subproblem and the associated branching information. SAT techniques can then be used to strengthen the resulting cuts. We performed computational experiments which show the potential of our method: On feasible MIP instances, the number of required branching nodes was reduced by 50\% in the geometric mean. However, the total solving time increased by 15\%. on infeasible MIPs arising in the context of chip verification, the number of nodes was reduced by 90\%, thereby reducing the solving time by 60\%.