Refine
Year of publication
Document Type
- ZIB-Report (21)
- Article (10)
- In Proceedings (9)
- Doctoral Thesis (2)
Keywords
- Mixed Integer Programming (7)
- mixed integer programming (7)
- Constraint Programming (3)
- Ganzzahlige Programmierung (3)
- IP (3)
- MIP (3)
- SAT (3)
- branch-and-cut (3)
- chip verification (3)
- constraint programming (3)
Mixed integer programs ($MIPs$) are commonly solved with branch and bound algorithms based on linear programming. The success and the speed of the algorithm strongly depends on the strategy used to select the branching variables. Today's state-of-the-art strategy is called \emph{pseudocost branching} and uses information of previous branchings to determine the current branching. We propose a modification of \emph{pseudocost branching} which we call \emph{history branching}. This strategy has been implemented in $SIP$, a state-of-the-art $MIP$ solver. We give computational results that show the superiority of the new strategy.
The Feasibility Pump of Fischetti, Glover, Lodi, and Bertacco has proved to be a very successful heuristic for finding feasible solutions of mixed integer programs. The quality of the solutions in terms of the objective value, however, tends to be poor. This paper proposes a slight modification of the algorithm in order to find better solutions. Extensive computational results show the success of this variant: in 89 out of 121 MIP instances the modified version produces improved solutions in comparison to the original Feasibility Pump.
Constraint Programs and Mixed Integer Programs are closely related optimization problems originating from different scientific areas. Today's state-of-the-art algorithms of both fields have several strategies in common, in particular the branch-and-bound process to recursively divide the problem into smaller sub problems. On the other hand, the main techniques to process each sub problem are different, and it was observed that they have complementary strenghts. We propose a programming framework {\sffamily SCIP} that integrates techniques from both fields in order to exploit the strenghts of both, Constraint Programming and Mixed Integer Programming. In contrast to other proposals of recent years to combine both fields, {\sffamily SCIP} does not focus on easy implementation and rapid prototyping, but is tailored towards expert users in need of full, in-depth control and high performance.
Branching rules revisited
(2004)
Mixed integer programs are commonly solved with linear programming based branch-and-bound algorithms. The success of the algorithm strongly depends on the strategy used to select the variable to branch on. We present a new generalization called {\sl reliability branching} of today's state-of-the-art {\sl strong branching} and {\sl pseudocost branching} strategies for linear programming based branch-and-bound algorithms. After reviewing commonly used branching strategies and performing extensive computational studies we compare different parameter settings and show the superiority of our proposed newstrategy.
This thesis introduces the novel paradigm of "constraint integer programming" (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method.
This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques.
This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques.
Starting with the description of the Traveling Salesmen Problem formulation as given by van Vyve and Wolsey in the article Approximate extended formulations'', we investigate the effects of small variations onto the performance of contemporary mixed integer programming solvers. We will show that even minor changes in the formulation of the model can result in performance difference of more than a factor of 1000. As the results show it is not obvious which changes will result in performance improvements and which not.
In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection.
Modern applications of mathematical programming must take into account a multitude of technical details, business demands, and legal requirements. Teaching the mathematical modeling of such issues and their interrelations requires real-world examples that are well beyond the toy sizes that can be tackled with the student editions of most commercial software packages. We present a new tool, which is freely available for academic use including complete source code. It consists of an algebraic modeling language and a linear mixed integer programming solver. The performance and features of the tool are in the range of current state-of-the-art commercial tools, though not in all aspects as good as the best ones. Our tool does allow the execution and analysis of large real-world instances in the classroom and can therefore enhance the teaching of problem solving issues. Teaching experience has been gathered and practical usability was tested in classes at several universities and a two week intensive block course at TU Berlin. The feedback from students and teachers has been very positive.