### Refine

#### Document Type

- In Proceedings (4)
- ZIB-Report (3)
- Article (1)

#### Keywords

- energy system models (1)
- high-performance computing (1)
- interior-point methods (1)
- pattern detection (1)
- railway timetables (1)
- visualization (1)

We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.

Rolling stock optimization is a task that naturally arises by operating a railway system.
It could be seen with different level of details. From a strategic perspective to have a rough plan which types of fleets to be bought to a more operational perspective to decide which coaches have to be maintained first. This paper presents a new approach to deal with rolling stock optimisation in case of a (long term) strike.
Instead of constructing a completely new timetable for the strike period, we propose a mixed integer programming model that is able to choose appropriate trips from a given timetable to construct efficient tours of railway vehicles covering an optimized subset of trips, in terms of deadhead kilometers and importance of the trips. The decision which trip is preferred over the other is made by a simple evaluation method that is deduced from the network and trip defining data.

Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.