Refine
Year of publication
Document Type
- ZIB-Report (15)
- Article (11)
- In Proceedings (2)
- Book chapter (1)
Language
- English (29)
Keywords
- Column generation (2)
- linear programming (2)
- mixed-integer semidefinite programming (2)
- parallelization (2)
- Branch-and-cut (1)
- Branch-and-price (1)
- Constraint integer programming (1)
- Iterative algorithm (1)
- LP solver (1)
- Linear programming (1)
Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.
The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem specific. In contrast, this paper introduces a general purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This is achieved by transforming various problem variants into a general form and solving them using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.
The tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to be operated the next day. The aim of this paper is to develop an operationally flexible tail assignment that satisfies short-range---within the next three days---aircraft maintenance requirements and performs the aircraft/flight gate assignment for each input line-of-flight. While maintenance plans commonly span multiple days, the related tail assignment problems can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by extending the one-day routes aircraft maintenance routing approach to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A mathematical model is presented that integrates the gate assignment and maintenance planning problems. To increase the satisfaction of maintenance requirements, an iterative algorithm is developed that modifies the fixed lines-of-flight provided as input to the tail assignment problem. The tail assignment problem and iterative algorithm are demonstrated to effectively satisfy maintenance requirements within appropriate run times using input data collected from three different airlines.
Price-and-verify: a new algorithm for recursive circle packing using Dantzig–Wolfe decomposition
(2020)
Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first dedicated method for solving RCPP that provides strong dual bounds based on an exact Dantzig–Wolfe reformulation of a nonconvex mixed-integer nonlinear programming formulation. The key idea of this reformulation is to break symmetry on each recursion level by enumerating one-level packings, i.e., packings of circles into other circles, and by dynamically generating packings of circles into rectangles. We use column generation techniques to design a “price-and-verify” algorithm that solves this reformulation to global optimality. Extensive computational experiments on a large test set show that our method not only computes tight dual bounds, but often produces primal solutions better than those computed by heuristics from the literature.
Schedule disruptions require airlines to intervene through the process of recovery; this involves modifications to the planned schedule, aircraft routings, crew pairings and passenger itineraries. Passenger recovery is generally considered as the final stage in this process, and hence passengers experience unnecessarily large impacts resulting from flight delays and cancellations. Most recovery approaches considering passengers involve a separately defined module within the problem formulation. However, this approach may be overly complex for recovery in many aviation and general transportation applications. This paper presents a unique description of the cancellation variables that models passenger recovery by prescribing the alternative travel arrangements for passengers in the event of flight cancellations. The results will demonstrate that this simple, but effective, passenger recovery approach significantly reduces the operational costs of the airline and increases passenger flow through the network. The integrated airline recovery problem with passenger reallocation is solved using column-and-row generation to achieve high quality solutions in short runtimes. An analysis of the column-and-row generation solution approach is performed, identifying a number of enhancement techniques to further improve the solution runtimes.
Airline recovery presents very large and difficult problems requiring high quality solutions within very short time limits. To improve computational performance, the complete airline recovery problem is generally formulated as a series of sequential stages. While the sequential approach greatly simplifies the complete recovery problem, there is no guarantee of global optimality or solution quality. To address this, there has been increasing interest in the development of efficient solution techniques to solve an integrated recovery problem. In this paper, an integrated airline recovery problem is proposed by integrating the schedule, crew and aircraft recovery stages. To achieve short runtimes and high quality solutions, this problem is solved using column-and-row generation. Column-and-row generation achieves an improvement in solution runtimes by reducing the problem size and thereby achieving a faster execution of each LP solve. Further, the results demonstrate that a good upper bound achieved early in the solution process, indicating an improved solution quality with the early termination of the algorithm. This paper also details the integration of the row generation procedure with branch-and-price, which is used to achieve integral optimal solutions. The benefits of applying column-and-row generation to solve the integrated recovery problem are demonstrated with a comparison to a standard column generation technique.
The unrooted set covering connected subgraph problem differentiating between HIV envelope sequences
(2016)
This paper presents a novel application of operations research techniques to the analysis of HIV Env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying the key features of Env involves two steps: first, calculating the covariance of amino acid combinations and positions to form a network of related and compensatory mutations; and second, developing an integer program to identify the smallest connected subgraph of the constructed covariance network that exhibits a set covering property. The integer program developed for this analysis, labelled the unrooted set covering connected subgraph problem (USCCSP), integrates a set covering problem and connectivity evaluation, the latter formulated as a network flow problem. The resulting integer program is very large and complex, requiring the use of Benders' decomposition to develop an efficient solution approach. The results will demonstrate the necessity of applying acceleration techniques to the Benders' decomposition solution approach and the effectiveness of these techniques and heuristic approaches for solving the USCCSP.
Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders' decomposition. We implement a two-phase algorithm for the Benders' decomposition and identify pareto-optimal cuts. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution against current approaches from the literature. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.
Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.