### Refine

#### Document Type

- In Proceedings (6)
- ZIB-Report (4)
- Book chapter (1)

#### Is part of the Bibliography

- no (11)

#### Keywords

- LP solver (1)
- MINLP solver (1)
- MIP solver (1)
- Multi-Criteria Optimisation (1)
- Steiner tree solver (1)
- Sustainability Indicator (1)
- System Dynamics (1)
- Value Creation Process (1)
- branch-cut-and-price framework (1)
- generic column generation (1)

PolySCIP
(2016)

PolySCIP is a new solver for multi-criteria integer and multi-criteria linear programs handling an arbitrary number of objectives. It is available as an official part of the non-commercial constraint integer programming framework SCIP. It utilizes a lifted weight space approach to compute the set of supported extreme non-dominated points and unbounded non-dominated rays, respectively. The algorithmic approach can be summarized as follows: At the beginning an arbitrary non-dominated point is computed (or it is determined that there is none) and a weight space polyhedron created. In every next iteration a vertex of the weight space polyhedron is selected whose entries give rise to a single-objective optimization problem via a combination of the original objectives. If the ptimization of this single-objective problem yields a new non-dominated point, the weight space polyhedron is updated. Otherwise another vertex of the weight space polyhedron is investigated. The algorithm finishes when all vertices of the weight space polyhedron have been investigated. The file format of PolySCIP is based on the widely used MPS format and allows a simple generation of multi-criteria models via an algebraic modelling language.

We consider a novel partitioning of the set of non-dominated points for general multi-objective integer programs with $k$ objectives. The set of non-dominated points is partitioned into a set of non-dominated points whose efficient solutions are also efficient for some restricted subproblem with one less objective; the second partition comprises the non-dominated points whose efficient solutions are
inefficient for any of the restricted subproblems. We show that the first partition has the nice property that it yields finite rectangular boxes in which the points of the second partition are
located.

It is clear that a transformation to sustainable value creation is needed, because business as usual is not an option for preserving competitive advantages of leading industries. What does that mean? This contribution proposes possible approaches for a shift in existing manufacturing paradigms. In a first step, sustainability aspects from the German Sustainability Strategy and from the tools of life cycle sustainability assessment are chosen to match areas of a value creation process. Within these aspects are indicators, which can be measured within a manufacturing process. Once these data are obtained they can be used to set up a mathematical linear pulse model of manufacturing in order to analyse the evolution of the system over time, that is the transition process, by using a system dynamics approach. An increase of technology development by a factor of 2 leads to an increase of manufacturing but also to an increase of climate change. Compensation measures need to be taken. This can be done by e.g. taking money from the GDP (as an indicator of the aspect ``macroeconomic performance''). The value of the arc from that building block towards climate change must then be increased by a factor of 10. The choice of independent and representative indicators or aspects shall be validated and double-checked for their significance with the help of multi-criteria mixed-integer programming optimisation methods.

The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.