### Refine

#### Year of publication

#### Document Type

- ZIB-Report (13)
- Article (11)
- In Proceedings (5)
- In Collection (3)
- Doctoral Thesis (1)

#### Is part of the Bibliography

- no (33)

#### Keywords

- optimal control (6)
- trajectory storage (5)
- lossy compression (4)
- Newton-CG (2)
- adjoint gradient computation (2)
- compression (2)
- finite elements (2)
- generic programming (2)
- nondestructive testing (2)
- partial differential equations (2)

In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and quasi-Newton methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy coding maintaining an error bound is sufficient.

Pulse thermography is a non-destructive testing method based on infrared imaging of transient thermal patterns. Heating the surface of the structure under test for a short period of time generates a non-stationary temperature distribution and thus a thermal contrast between the defect and the sound material. Due to measurement noise, preprocessing of the experimental data is necessary, before reconstruction algorithms can be applied. We propose a decomposition of the measured temperature into Green's function solutions to eliminate noise.

This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study.

In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data.

In gradient-based methods for parabolic optimal control problems, it is necessary to solve both the state equation and a backward-in-time adjoint equation in each iteration of the optimization method. In order to facilitate fully parallel gradient-type and nonlinear conjugate gradient methods for the solution of such optimal control problems, we discuss the application of the parallel-in-time method PFASST to adjoint gradient computation. In addition to enabling time parallelism, PFASST provides high flexibility for handling nonlinear equations, as well as potential extra computational savings from reusing previous solutions in the optimization loop. The approach is demonstrated here for a model reaction-diffusion optimal control problem.

Parallel in time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel in time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet no sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups.

In optimal control problems with nonlinear time-dependent 3D PDEs, the computation of the reduced gradient by adjoint methods requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. Since the state enters into the adjoint equation, the storage of a 4D discretization is necessary. We propose a lossy compression algorithm using a cheap predictor for the state data, with additional entropy coding of prediction errors. Analytical and numerical results indicate that compression factors around 30 can be obtained without exceeding the FE discretization error.