Refine
Document Type
- ZIB-Report (22)
- Article (11)
- In Proceedings (11)
- Book chapter (1)
Is part of the Bibliography
- no (45)
Keywords
- Periodic Timetabling (10)
- Periodic Event Scheduling Problem (8)
- Mixed-Integer Programming (5)
- Mixed Integer Programming (4)
- Periodic timetabling (3)
- Railway Timetabling (3)
- Public Transport (2)
- Timetabling (2)
- Train Routing (2)
- line planning (2)
Institute
Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem in public transport. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we contribute a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.
We introduce a concurrent solver for the periodic event scheduling problem (PESP). It combines mixed integer programming techniques, the modulo network simplex method, satisfiability approaches, and a new heuristic based on maximum cuts. Running these components in parallel speeds up the overall solution process. This enables us to significantly improve the current upper and lower bounds for all benchmark instances of the library PESPlib.
In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables.
We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either.
The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible.
We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time.
We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. We finally present better dual bounds for the smallest and largest instance of the benchmarking library PESPlib.
The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances.
Hypersurfaces with defect
(2020)
A projective hypersurface X⊆P^n has defect if h^i(X) ≠ h^i(P^n) for some i∈{n,…,2n−2} in a suitable cohomology theory. This occurs for example when X⊆P^4 is not Q-factorial. We show that hypersurfaces with defect tend to be very singular: In characteristic 0, we present a lower bound on the Tjurina number, where X is allowed to have arbitrary isolated singularities. For X with mild singularities, we prove a similar result in positive characteristic. As an application, we obtain an estimate on the asymptotic density of hypersurfaces without defect over a finite field.
We introduce a concurrent solver for the periodic event scheduling problem (PESP). It combines mixed integer programming techniques, the modulo network simplex method, satisfiability approaches, and a new heuristic based on maximum cuts. Running these components in parallel speeds up the overall solution process. This enables us to significantly improve the current upper and lower bounds for all benchmark instances of the library PESPlib.
A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable
(2018)
We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same.
We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively.
The Periodic Event Scheduling Problem (PESP) is the standard mathematical tool for optimizing periodic timetabling problems in public transport. A solution to PESP consists of three parts: a periodic timetable, a periodic tension, and integer periodic offset values. While the space of periodic tension has received much attention in the past, we explore geometric properties of the other two components, establishing novel connections between periodic timetabling and discrete geometry. Firstly, we study the space of feasible periodic timetables, and decompose it into polytropes, i.e., polytopes that are convex both classically and in the sense of tropical geometry. We then study this decomposition and use it to outline a new heuristic for PESP, based on the tropical neighbourhood of the polytropes. Secondly, we recognize that the space of fractional cycle offsets is in fact a zonotope. We relate its zonotopal tilings back to the hyperrectangle of fractional periodic tensions and to the tropical neighbourhood of the periodic timetable space. To conclude we also use this new understanding to give tight lower bounds on the minimum width of an integral cycle basis.