TY - JOUR A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika A1 - Lindner, Niels T1 - Separation of cycle inequalities in periodic timetabling JF - Discrete Optimization N2 - Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem in public transport. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we contribute a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem. Y1 - 2020 U6 - https://doi.org/10.1016/j.disopt.2019.100552 IS - 35 SP - 100552 ER - TY - JOUR A1 - Borndörfer, Ralf A1 - Lindner, Niels A1 - Roth, Sarah T1 - A Concurrent Approach to the Periodic Event Scheduling Problem JF - Journal of Rail Transport Planning & Management N2 - We introduce a concurrent solver for the periodic event scheduling problem (PESP). It combines mixed integer programming techniques, the modulo network simplex method, satisfiability approaches, and a new heuristic based on maximum cuts. Running these components in parallel speeds up the overall solution process. This enables us to significantly improve the current upper and lower bounds for all benchmark instances of the library PESPlib. Y1 - 2020 U6 - https://doi.org/10.1016/j.jrtpm.2019.100175 SN - 2210-9706 IS - 15 SP - 100175 ER - TY - CHAP A1 - Lindner, Niels A1 - Liebchen, Christian ED - Cacchiani, Valentina ED - Marchetti-Spaccamela, Alberto T1 - New Perspectives on PESP: T-Partitions and Separators T2 - 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019) N2 - In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables. We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either. The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible. We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time. Y1 - 2019 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2019.2 VL - 75 SP - 2:1 EP - 2:18 PB - Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik CY - Dagstuhl, Germany ER - TY - CHAP A1 - Lindner, Niels A1 - Liebchen, Christian ED - Huisman, Dennis ED - Zaroliagis, Christos D. T1 - Determining all integer vertices of the PESP polytope by flipping arcs T2 - 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020) N2 - We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. We finally present better dual bounds for the smallest and largest instance of the benchmarking library PESPlib. Y1 - 2020 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2020.5 VL - 85 SP - 5:1 EP - 5:18 PB - Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik CY - Dagstuhl, Germany ER - TY - CHAP A1 - Löbel, Fabian A1 - Lindner, Niels A1 - Borndörfer, Ralf ED - Neufeld, Janis S. ED - Buscher, Udo ED - Lasch, Rainer ED - Möst, Dominik ED - Schönberger, Jörn T1 - The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing T2 - Operations Research Proceedings 2019 N2 - The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances. Y1 - 2020 SN - 978-3-030-48438-5 U6 - https://doi.org/https://doi.org/10.1007/978-3-030-48439-2_92 SP - 757 EP - 763 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Lindner, Niels T1 - Hypersurfaces with defect JF - Journal of Algebra N2 - A projective hypersurface X⊆P^n has defect if h^i(X) ≠ h^i(P^n) for some i∈{n,…,2n−2} in a suitable cohomology theory. This occurs for example when X⊆P^4 is not Q-factorial. We show that hypersurfaces with defect tend to be very singular: In characteristic 0, we present a lower bound on the Tjurina number, where X is allowed to have arbitrary isolated singularities. For X with mild singularities, we prove a similar result in positive characteristic. As an application, we obtain an estimate on the asymptotic density of hypersurfaces without defect over a finite field. Y1 - 2020 U6 - https://doi.org/10.1016/j.jalgebra.2020.02.022 VL - 555 SP - 1 EP - 35 ER - TY - CHAP A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Liebchen, Christian A1 - Lindner, Niels T1 - A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable T2 - 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018) N2 - We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same. Y1 - 2018 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2018.16 VL - 65 SP - 16:1 EP - 16:15 ER - TY - JOUR A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Timetable merging for the Periodic Event Scheduling Problem JF - EURO Journal on Transportation and Logistics N2 - We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively. Y1 - 2022 U6 - https://doi.org/10.1016/j.ejtl.2022.100081 VL - 11 SP - 100081 ER - TY - JOUR A1 - Schlechte, Thomas A1 - Borndörfer, Ralf A1 - Denißen, Jonas A1 - Heller, Simon A1 - Klug, Torsten A1 - Küpper, Michael A1 - Lindner, Niels A1 - Reuther, Markus A1 - Söhlke, Andreas A1 - Steadman, William T1 - Timetable Optimization for a Moving Block System JF - Journal of Rail Transport Planning & Management N2 - We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality. Y1 - 2022 U6 - https://doi.org/10.1016/j.jrtpm.2022.100315 SN - 2210-9706 VL - 22 SP - 100315 ER - TY - CHAP A1 - Lindner, Niels A1 - Liebchen, Christian A1 - Masing, Berenike T1 - Forward Cycle Bases and Periodic Timetabling T2 - 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021) N2 - Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance R1L1 of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds. Y1 - 2021 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2021.2 VL - 96 SP - 2:1 EP - 2:14 ER - TY - CHAP A1 - Lindner, Niels A1 - Maristany de las Casas, Pedro A1 - Schiewe, Philine T1 - Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data T2 - 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021) N2 - We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport. Y1 - 2021 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2021.7 VL - 96 SP - 7:1 EP - 7:15 ER - TY - CHAP A1 - Lindner, Niels A1 - van Lieshout, Rolf T1 - Benders Decomposition for the Periodic Event Scheduling Problem T2 - Operations Research Proceedings 2021 N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical model behind the optimization of periodic timetables in public transport. We apply Benders decomposition to the incidence-based MIP formulation of PESP. The resulting formulation exhibits particularly nice features: The subproblem is a minimum cost network flow problem, and feasibility cuts are equivalent to the well-known cycle inequalities by Odijk. We integrate the Benders approach into a branch-and-cut framework, and assess the performance of this method on instances derived from the benchmarking library PESPlib. Y1 - 2022 U6 - https://doi.org/10.1007/978-3-031-08623-6_43 SP - 289 EP - 294 PB - Springer International Publishing CY - Cham ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - The Price of Symmetric Line Plans in the Parametric City N2 - We consider the line planning problem in public transport in the Parametric City, an idealized model that captures typical scenarios by a (small) number of parameters. The Parametric City is rotation symmetric, but optimal line plans are not always symmetric. This raises the question to quantify the symmetry gap between the best symmetric and the overall best solution. For our analysis, we formulate the line planning problem as a mixed integer linear program, that can be solved in polynomial time if the solutions are forced to be symmetric. The symmetry gap is provably small when a specific Parametric City parameter is fixed, and we give an approximation algorithm for line planning in the Parametric City in this case. While the symmetry gap can be arbitrarily large in general, we show that symmetric line plans are a good choice in most practical situations. T3 - ZIB-Report - 22-01 KW - line planning KW - mixed integer programming KW - parametric city modeling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-85648 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Determining all integer vertices of the PESP polytope by flipping arcs N2 - We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-19 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Mixed Integer Programming Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78793 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - New Perspectives on PESP: T-Partitions and Separators N2 - In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables. We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either. The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible. We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time. T3 - ZIB-Report - 19-35 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Graph Partitioning KW - Graph Separators KW - Balanced Cuts Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73853 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Denißen, Jonas A1 - Heller, Simon A1 - Klug, Torsten A1 - Küpper, Michael A1 - Lindner, Niels A1 - Reuther, Markus A1 - Schlechte, Thomas A1 - Söhlke, Andreas A1 - Steadman, William T1 - Microscopic Timetable Optimization for a Moving Block System N2 - We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality. T3 - ZIB-Report - 21-13 KW - Moving Block KW - Railway Track Allocation KW - Railway Timetabling KW - Train Routing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82547 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian A1 - Masing, Berenike T1 - Forward Cycle Bases and Periodic Timetabling N2 - Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance \texttt{R1L1} of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds. T3 - ZIB-Report - 21-18 KW - Periodic Timetabling KW - Cycle Bases KW - Mixed Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82756 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Maristany de las Casas, Pedro A1 - Schiewe, Philine T1 - Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data N2 - We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport. T3 - ZIB-Report - 21-17 KW - Preprocessing Shortest Path Problems KW - Interval Data KW - Graph Algorithms Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-82716 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Karbstein, Marika A1 - Liebchen, Christian A1 - Lindner, Niels T1 - A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable N2 - We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same. T3 - ZIB-Report - 18-38 KW - Vehicle scheduling KW - Periodic timetabling KW - Bipartite matching Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69688 SN - 1438-0064 ER - TY - GEN A1 - Löbel, Fabian A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing N2 - The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances. T3 - ZIB-Report - 19-36 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Integrated Passenger Routing KW - Shortest Routes in Public Transport Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-73868 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - van Lieshout, Rolf T1 - Benders Decomposition for the Periodic Event Scheduling Problem N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical model behind the optimization of periodic timetables in public transport. We apply Benders decomposition to the incidence-based MIP formulation of PESP. The resulting formulation exhibits particularly nice features: The subproblem is a minimum cost network flow problem, and feasibility cuts are equivalent to the well-known cycle inequalities by Odijk. We integrate the Benders approach into a branch-and-cut framework, and assess the performance of this method on instances derived from the benchmarking library PESPlib. T3 - ZIB-Report - 21-29 KW - Periodic Timetabling KW - Periodic Event Scheduling Problem KW - Benders Decomposition KW - Mixed-Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-83338 SN - 1438-0064 ER - TY - JOUR A1 - Lindner, Niels A1 - Reisch, Julian T1 - An analysis of the parameterized complexity of periodic timetabling JF - Journal of Scheduling N2 - Public transportation networks are typically operated with a periodic timetable. The periodic event scheduling problem (PESP) is the standard mathematical modeling tool for periodic timetabling. PESP is a computationally very challenging problem: For example, solving the instances of the benchmarking library PESPlib to optimality seems out of reach. Since PESP can be solved in linear time on trees, and the treewidth is a rather small graph parameter in the networks of the PESPlib, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth, or even better, fixed-parameter tractable algorithms. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. Moreover, we show W[1]-hardness of the general feasibility problem with respect to treewidth, which means that we can most likely only accomplish pseudo-polynomial-time algorithms on input networks with bounded tree- or branchwidth. We present two such algorithms based on dynamic programming. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special—but standard—structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib. Y1 - 2022 U6 - https://doi.org/10.1007/s10951-021-00719-1 VL - 25 SP - 157 EP - 176 ER - TY - GEN A1 - Bortoletto, Enrico A1 - Lindner, Niels A1 - Masing, Berenike T1 - Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling N2 - Periodic timetabling is a central aspect of both the long-term organization and the day-to-day operations of a public transportation system. The Periodic Event Scheduling Problem (PESP), the combinatorial optimization problem that forms the mathematical basis of periodic timetabling, is an extremely hard problem, for which optimal solutions are hardly ever found in practice. The most prominent solving strategies today are based on mixed-integer programming, and there is a concurrent PESP solver employing a wide range of heuristics [3]. We present tropical neighborhood search (tns), a novel PESP heuristic. The method is based on the relations between periodic timetabling and tropical geometry [4]. We implement tns into the concurrent solver, and test it on instances of the benchmarking library PESPlib. The inclusion of tns turns out to be quite beneficial to the solver: tns is able to escape local optima for the modulo network simplex algorithm, and the overall share of improvement coming from tns is substantial compared to the other methods available in the solver. Finally, we provide better primal bounds for five PESPlib instances. T3 - ZIB-Report - 22-13 KW - Periodic Timetabling KW - Tropical Geometry KW - Neighbourhood Search KW - Mixed-Integer Programming Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-87385 SN - 1438-0064 ER - TY - JOUR A1 - Masing, Berenike A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - The price of symmetric line plans in the Parametric City JF - Transportation Research Part B: Methodological N2 - We consider the line planning problem in public transport in the Parametric City, an idealized model that captures typical scenarios by a (small) number of parameters. The Parametric City is rotation symmetric, but optimal line plans are not always symmetric. This raises the question to quantify the symmetry gap between the best symmetric and the overall best solution. For our analysis, we formulate the line planning problem as a mixed integer linear program, that can be solved in polynomial time if the solutions are forced to be symmetric. We prove that the symmetry gap is small when a specific Parametric City parameter is fixed, and we give an approximation algorithm for line planning in the Parametric City in this case. While the symmetry gap can be arbitrarily large in general, we show that symmetric line plans are a good choice in most practical situations. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88613 VL - 166 SP - 419 EP - 443 ER - TY - CHAP A1 - Masing, Berenike A1 - Lindner, Niels A1 - Borndörfer, Ralf ED - Trautmann, Norbert ED - Drägi, Mario T1 - Optimal Line Plans in the Parametric City and the Impact of In-Motion Costs T2 - Operations Research Proceedings 2021 N2 - Line planning in public transport involves determining vehicle routes and assigning frequencies of service such that travel demands are satisfied. We evaluate how line plans, which are optimal with respect to in-motion costs (IMC), the objective function depending purely on arc-lengths for both user and operator costs, performs with respect to the value of resources consumed (VRC). The latter is an elaborate, socio-economic cost function which includes discomfort caused by delay, boarding and alighting times, and transfers. Even though discomfort is a large contributing factor to VRC and is entirely disregarded in IMC,  we observe that the two cost functions are qualitatively comparable. Y1 - 2022 SN - 978-3-031-08623-6 U6 - https://doi.org/10.1007/978-3-031-08623-6_44 SP - 295 EP - 301 PB - Springer, Cham ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - Optimal Line Plans in the Parametric City and the Impact of In-Motion Costs N2 - Line planning in public transport involves determining vehicle routes and assigning frequencies of service such that travel demands are satisfied. We evaluate how line plans, which are optimal with respect to in-motion costs (IMC), the objective function depending purely on arc-lengths for both user and operator costs, performs with respect to the value of resources consumed (VRC). The latter is an elaborate, socio-economic cost function which includes discomfort caused by delay, boarding and alighting times, and transfers. Even though discomfort is a large contributing factor to VRC and is entirely disregarded in IMC, we observe that the two cost functions are qualitatively comparable. T3 - ZIB-Report - 21-27 KW - line planning KW - public transport KW - mixed-integer prgramming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-84195 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Reisch, Julian T1 - Parameterized Complexity of Periodic Timetabling N2 - Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib. T3 - ZIB-Report - 20-15 KW - Parameterized complexity KW - Periodic timetabling KW - Treewidth KW - Branchwidth KW - Carvingwidth KW - Periodic Event Scheduling Problem Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-78314 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Timetable Merging for the Periodic Event Scheduling Problem N2 - We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively. T3 - ZIB-Report - 21-06 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Railway Timetabling KW - PESPlib KW - Benchmark Solutions KW - Mixed Integer Programming Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-81587 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Incremental Heuristics for Periodic Timetabling N2 - We present incremental heuristics for the Periodic Event Scheduling Problem (PESP), the standard mathematical tool to optimize periodic timetables in public transport. The core of our method is to solve successively larger subinstances making use of previously found solutions. Introducing the technical notion of free stratifications, we formulate a general scheme for incremental heuristics for PESP. More practically, we use line and station information to create heuristics that add lines or stations one by one, and we evaluate these heuristics on instances of the benchmarking library PESPlib. This approach is indeed viable, and leads to new incumbent solutions for six PESPlib instances. T3 - ZIB-Report - 23-22 KW - Timetabling KW - Mixed-Integer Programming KW - Public Transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92309 SN - 1438-0064 ER - TY - GEN A1 - Bortoletto, Enrico A1 - Lindner, Niels T1 - Scaling and Rounding Periodic Event Scheduling Instances to Different Period Times N2 - The Periodic Event Scheduling Problem (PESP) is a notoriously hard combinatorial optimization problem, essential for the design of periodic timetables in public transportation. The coefficients of the integer variables in the standard mixed integer linear programming formulations of PESP are the period time, e.g., 60 for a horizon of one hour with a resolution of one minute. In many application scenarios, lines with different frequencies have to be scheduled, leading to period times with many divisors. It then seems natural to consider derived instances, where the period time is a divisor of the original one, thereby smaller, and bounds are scaled and rounded accordingly. To this end, we identify two rounding schemes: wide and tight. We then discuss the approximation performance of both strategies, in theory and practice. T3 - ZIB-Report - 23-23 KW - Timetabling KW - Mixed-Integer Programming KW - Public Transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-92315 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Masing, Berenike T1 - On the Split Closure of the Periodic Timetabling Polytope N2 - The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixed-integer programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless P $=$ NP, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances. T3 - ZIB-Report - 23-16 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Split Closure KW - Mixed-Integer Programming Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-91156 SN - 1438-0064 ER - TY - JOUR A1 - Schiewe, Philine A1 - Goerigk, Marc A1 - Lindner, Niels T1 - Introducing TimPassLib – A Library for Integrated Periodic Timetabling and Passenger Routing JF - Operations Research Forum N2 - Classic models to derive a timetable for public transport often face a chicken-and-egg situation: A good timetable should offer passengers routes with small travel times, but the route choice of passengers depends on the timetable. While models that fix passenger routes were frequently considered in the literature, integrated models that simultaneously optimize timetables and passenger routes have seen increasing attention lately. This creates a growing need for a set of instances that allows to test and compare new algorithmic developments for the integrated problem. Our paper addresses this requirement by presenting TimPassLib, a new benchmark library of instances for integrated periodic timetabling and passenger routing. Y1 - 2023 U6 - https://doi.org/10.1007/s43069-023-00244-1 VL - 4 IS - 3 SP - 64 ER - TY - CHAP A1 - Masing, Berenike A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Integrating Line Planning for Construction Sites into Periodic Timetabling via Track Choice T2 - 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023) N2 - We consider maintenance sites for urban rail systems, where unavailable tracks typically require changes to the regular timetable, and often even to the line plan. In this paper, we present an integrated mixed-integer linear optimization model to compute an optimal line plan that makes best use of the available tracks, together with a periodic timetable, including its detailed routing on the tracks within the stations. The key component is a flexible, turn-sensitive event-activity network that allows to integrate line planning and train routing using a track choice extension of the Periodic Event Scheduling Problem (PESP). Major goals are to maintain as much of the regular service as possible, and to keep the necessary changes rather local. Moreover, we present computational results on real construction site scenarios on the S-Bahn Berlin network. We demonstrate that this integrated problem is indeed solvable on practically relevant instances. Y1 - 2023 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2023.5 VL - 115 SP - 5:1 EP - 5:15 ER - TY - GEN A1 - Schiewe, Philine A1 - Goerigk, Marc A1 - Lindner, Niels T1 - Introducing TimPassLib - A library for integrated periodic timetabling and passenger routing N2 - Classic models to derive a timetable for public transport often face a chicken-and-egg situation: A good timetable should offer passengers routes with small travel times, but the route choice of passengers depends on the timetable. While models that fix passenger routes were frequently considered in the literature, integrated models that simultaneously optimize timetables and passenger routes have seen increasing attention lately. This creates a growing need for a set of instances that allows to test and compare new algorithmic developments for the integrated problem. Our paper addresses this requirement by presenting TimPassLib, a new benchmark library of instances for integrated periodic timetabling and passenger routing. T3 - ZIB-Report - 23-06 KW - periodic timetabling KW - optimization in public transport KW - data sets KW - benchmarking Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89741 SN - 1438-0064 ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. T3 - ZIB-Report - 23-05 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-89731 SN - 1438-0064 ER - TY - JOUR A1 - Masing, Berenike A1 - Lindner, Niels A1 - Ebert, Patricia T1 - Forward and Line-Based Cycle Bases for Periodic Timetabling JF - Operations Research Forum N2 - The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak, and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure, and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances. Y1 - 2023 U6 - https://doi.org/10.1007/s43069-023-00229-0 VL - 4 IS - 3 SP - 53 ER - TY - CHAP A1 - Şahin, Güvenç A1 - Lindner, Niels A1 - Schlechte, Thomas ED - Pardalos, P. M. ED - Prokopyev, O. A. T1 - Line Planning Problem T2 - Encyclopedia of Optimization Y1 - 2023 SN - 978-3-030-54621-2 U6 - https://doi.org/10.1007/978-3-030-54621-2_782-1 SP - 1 EP - 6 PB - Springer International Publishing CY - Cham ER - TY - GEN A1 - Masing, Berenike A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Periodic Timetabling with Integrated Track Choice for Railway Construction Sites N2 - We propose a mixed-integer linear programming model to generate and optimize periodic timetables with integrated track choice in the context of railway construction sites. When a section of a railway network becomes unavailable, the nearby areas are typically operated close to their capacity limits, and hence carefully modeling headways and allowing flexible routings becomes vital. We therefore discuss first how to integrate headway constraints into the Periodic Event Scheduling Problem (PESP) that do not only prevent overtaking, but also guarantee conflict-free timetables in general and particularly inside stations. Secondly, we introduce a turn-sensitive event-activity network, which is able to integrate routing alternatives for turnarounds at stations, e.g., turning at a platform vs. at a pocket track for metro-like systems. We propose several model formulations to include track choice, and finally evaluate them on six real construction site scenarios on the S-Bahn Berlin network. T3 - ZIB-Report - 22-26 KW - Railway Timetabling KW - Periodic Timetabling KW - Periodic Event Scheduling KW - Train Routing KW - Turnarounds Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-88626 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Lindner, Niels A1 - Roth, Sarah T1 - A Concurrent Approach to the Periodic Event Scheduling Problem N2 - We introduce a concurrent solver for the periodic event scheduling problem (PESP). It combines mixed integer programming techniques, the modulo network simplex method, satisfiability approaches, and a new heuristic based on maximum cuts. Running these components in parallel speeds up the overall solution process. This enables us to significantly improve the current upper and lower bounds for all benchmark instances of the library PESPlib. T3 - ZIB-Report - 19-07 KW - Periodic Event Scheduling Problem KW - Periodic Timetabling KW - Mixed Integer Programming Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-71907 SN - 1438-0064 ER - TY - GEN A1 - Borndörfer, Ralf A1 - Hoppmann, Heide A1 - Karbstein, Marika A1 - Lindner, Niels T1 - Separation of Cycle Inequalities in Periodic Timetabling N2 - Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algo- rithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem. T3 - ZIB-Report - 18-16 KW - Periodic timetabling KW - Cycle inequality KW - Change-cycle inequality Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-69746 SN - 1438-0064 ER - TY - JOUR A1 - Euler, Ricardo A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - Price optimal routing in public transportation JF - EURO Journal on Transportation and Logistics KW - Management Science and Operations Research KW - Transportation KW - Modeling and Simulation Y1 - 2024 U6 - https://doi.org/10.1016/j.ejtl.2024.100128 SN - 2192-4376 VL - 13 SP - 1 EP - 15 PB - Elsevier BV ER - TY - JOUR A1 - Euler, Ricardo A1 - Lindner, Niels A1 - Borndörfer, Ralf T1 - Price Optimal Routing in Public Transportation N2 - We consider the price-optimal earliest arrival problem in public transit (POEAP) in which we aim to calculate the Pareto-front of journeys with respect to ticket price and arrival time in a public transportation network. Public transit fare structures are often a combination of various fare strategies such as, e.g., distance-based fares, zone-based fares or flat fares. The rules that determine the actual ticket price are often very complex. Accordingly, fare structures are notoriously difficult to model as it is in general not sufficient to simply assign costs to arcs in a routing graph. Research into POEAP is scarce and usually either relies on heuristics or only considers restrictive fare models that are too limited to cover the full scope of most real-world applications. We therefore introduce conditional fare networks (CFNs), the first framework for representing a large number of real-world fare structures. We show that by relaxing label domination criteria, CFNs can be used as a building block in label-setting multi-objective shortest path algorithms. By the nature of their extensive modeling capabilities, optimizing over CFNs is NP-hard. However, we demonstrate that adapting the multi-criteria RAPTOR (MCRAP) algorithm for CFNs yields an algorithm capable of solving POEAP to optimality in less than 400 ms on average on a real-world data set. By restricting the size of the Pareto-set, running times are further reduced to below 10 ms. Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-86414 ER - TY - CHAP A1 - Bortoletto, Enrico A1 - Lindner, Niels A1 - Masing, Berenike T1 - Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling T2 - 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022) N2 - Periodic timetabling is a central aspect of both the long-term organization and the day-to-day operations of a public transportation system. The Periodic Event Scheduling Problem (PESP), the combinatorial optimization problem that forms the mathematical basis of periodic timetabling, is an extremely hard problem, for which optimal solutions are hardly ever found in practice. The most prominent solving strategies today are based on mixed-integer programming, and there is a concurrent PESP solver employing a wide range of heuristics [Borndörfer et al., 2020]. We present tropical neighborhood search (tns), a novel PESP heuristic. The method is based on the relations between periodic timetabling and tropical geometry [Bortoletto et al., 2022]. We implement tns into the concurrent solver, and test it on instances of the benchmarking library PESPlib. The inclusion of tns turns out to be quite beneficial to the solver: tns is able to escape local optima for the modulo network simplex algorithm, and the overall share of improvement coming from tns is substantial compared to the other methods available in the solver. Finally, we provide better primal bounds for five PESPlib instances. Y1 - 2022 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2022.3 VL - 106 SP - 3:1 EP - 3:19 ER - TY - GEN A1 - Bortoletto, Enrico A1 - Lindner, Niels A1 - Masing, Berenike T1 - The tropical and zonotopal geometry of periodic timetables N2 - The Periodic Event Scheduling Problem (PESP) is the standard mathematical tool for optimizing periodic timetabling problems in public transport. A solution to PESP consists of three parts: a periodic timetable, a periodic tension, and integer periodic offset values. While the space of periodic tension has received much attention in the past, we explore geometric properties of the other two components, establishing novel connections between periodic timetabling and discrete geometry. Firstly, we study the space of feasible periodic timetables, and decompose it into polytropes, i.e., polytopes that are convex both classically and in the sense of tropical geometry. We then study this decomposition and use it to outline a new heuristic for PESP, based on the tropical neighbourhood of the polytropes. Secondly, we recognize that the space of fractional cycle offsets is in fact a zonotope. We relate its zonotopal tilings back to the hyperrectangle of fractional periodic tensions and to the tropical neighbourhood of the periodic timetable space. To conclude we also use this new understanding to give tight lower bounds on the minimum width of an integral cycle basis. T3 - ZIB-Report - 22-09 KW - periodic event scheduling KW - tropical geometry KW - zonotopal tilings Y1 - 2022 SN - 1438-0064 ER - TY - GEN A1 - Lindner, Niels A1 - Masing, Berenike T1 - SAT-Generated Initial Solutions for Integrated Line Planning and Turn-Sensitive Periodic Timetabling with Track Choice N2 - Periodic timetabling is a challenging planning task in public transport. As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turnarounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network. T3 - ZIB-Report - 24-01 KW - Periodic Timetabling KW - Railway Timetabling KW - Railway Track Allocation KW - Boolean Satisfiability Problem KW - Rescheduling KW - Line Planning Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-94644 SN - 1438-0064 ER - TY - CHAP A1 - Bortoletto, Enrico A1 - Lindner, Niels A1 - Masing, Berenike T1 - Periodic Timetabling with Cyclic Order Constraints T2 - 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023) N2 - Periodic timetabling for highly utilized railway networks is a demanding challenge. We formulate an infrastructure-aware extension of the Periodic Event Scheduling Problem (PESP) by requiring that not only events, but also activities using the same infrastructure must be separated by a minimum headway time. This extended problem can be modeled as a mixed-integer program by adding constraints on the sum of periodic tensions along certain cycles, so that it shares some structural properties with standard PESP. We further refine this problem by fixing cyclic orders at each infrastructure element. Although the computational complexity remains unchanged, the mixed-integer programming model then becomes much smaller. Furthermore, we also discuss how to find a minimal subset of infrastructure elements whose cyclic order already prescribes the order for the remaining parts of the network, and how cyclic order information can be modeled in a mixed-integer programming context. In practice, we evaluate the impact of cyclic orders on a real-world instance on the S-Bahn Berlin network, which turns out to be computationally fruitful. Y1 - 2023 U6 - https://doi.org/10.4230/OASIcs.ATMOS.2023.7 VL - 115 SP - 7:1 EP - 7:18 ER - TY - JOUR A1 - Masing, Berenike A1 - Lindner, Niels A1 - Liebchen, Christian T1 - Periodic timetabling with integrated track choice for railway construction sites JF - Journal of Rail Transport Planning & Management N2 - We propose a mixed-integer linear programming model to generate and optimize periodic timetables with integrated track choice in the context of railway construction sites. When a section of a railway network becomes unavailable, the nearby areas are typically operated close to their capacity limits, and hence carefully modeling headways and allowing flexible routings becomes vital. We therefore discuss first how to integrate headway constraints into the Periodic Event Scheduling Problem (PESP) that do not only prevent overtaking, but also guarantee conflict-free timetables in general and particularly inside stations. Secondly, we introduce a turn-sensitive event-activity network, which is able to integrate routing alternatives for turnarounds at stations, e.g., turning at a platform vs. at a pocket track for metro-like systems. We propose several model formulations to include track choice, and finally evaluate them on six real construction site scenarios on the S-Bahn Berlin network. Y1 - 2023 U6 - https://doi.org/10.1016/j.jrtpm.2023.100416 VL - 28 SP - 100416 ER -