### Refine

#### Year of publication

#### Document Type

- ZIB-Report (40)
- Article (38)
- In Collection (9)
- In Proceedings (5)
- Book (3)
- Book chapter (2)
- Report (1)

#### Is part of the Bibliography

- no (98)

#### Keywords

- optimal control (15)
- interior point methods in function space (5)
- trajectory storage (4)
- finite elements (3)
- lossy compression (3)
- Newton-CG (2)
- complementarity functions (2)
- compression (2)
- discretization error (2)
- finite element method (2)

#### Institute

- Computational Medicine (98) (remove)

The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.

The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs.

The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.

Container Adaptors
(1999)

The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container.

A thorough convergence analysis of the Control Reduced Interior Point Method in function space is performed. This recently proposed method is a primal interior point pathfollowing scheme with the special feature, that the control variable is eliminated from the optimality system. Apart from global linear convergence we show, that this method converges locally almost quadratically, if the optimal solution satisfies a function space analogue to a non-degeneracy condition. In numerical experiments we observe, that a prototype implementation of our method behaves in compliance with our theoretical results.

An affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods is presented. The theory is used for the construction of an accuracy matching between iteration errors and truncation errors, which arise from the inexact linear system solves. The theoretical investigations are illustrated numerically by an optimal control problem for the Burgers equation.

A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.

Parabolic reaction-diffusion systems may develop sharp moving reaction fronts which pose a challenge even for adaptive finite element methods. We propose a method to transform the equation into an equivalent form that usually exhibits solutions which are easier to discretize, giving higher accuracy for a given number of degrees of freedom. The transformation is realized as an efficiently computable pointwise nonlinear scaling that is optimized for prototypical planar travelling wave solutions of the underlying reaction-diffusion equation. The gain in either performance or accuracy is demonstrated on different numerical examples.

Fast nonlinear programming methods following the all-at-once approach usually employ Newton's method for solving linearized Karush-Kuhn-Tucker (KKT) systems. In nonconvex problems, the Newton direction is only guaranteed to be a descent direction if the Hessian of the Lagrange function is positive definite on the nullspace of the active constraints, otherwise some modifications to Newton's method are necessary. This condition can be verified using the signs of the KKT's eigenvalues (inertia), which are usually available from direct solvers for the arising linear saddle point problems. Iterative solvers are mandatory for very large-scale problems, but in general do not provide the inertia. Here we present a preconditioner based on a multilevel incomplete $LBL^T$ factorization, from which an approximation of the inertia can be obtained. The suitability of the heuristics for application in optimization methods is verified on an interior point method applied to the CUTE and COPS test problems, on large-scale 3D PDE-constrained optimal control problems, as well as 3D PDE-constrained optimization in biomedical cancer hyperthermia treatment planning. The efficiency of the preconditioner is demonstrated on convex and nonconvex problems with $150^3$ state variables and $150^2$ control variables, both subject to bound constraints.