Refine
Document Type
- Article (8)
- In Proceedings (5)
- In Collection (2)
- Other (2)
- ZIB-Report (2)
- Book chapter (1)
- Doctoral Thesis (1)
Language
- English (21)
Is part of the Bibliography
- no (21)
Keywords
- data analysis (1)
- feature detection (1)
- time-varying data (1)
- topology-based techniques (1)
We propose a combinatorial algorithm to track critical points of 2D
time-dependent scalar fields. Existing tracking algorithms such as Feature
Flow Fields apply numerical schemes utilizing derivatives of the data,
which makes them prone to noise and involve a large number of computational
parameters. In contrast, our method is robust against noise
since it does not require derivatives, interpolation, and numerical integration.
Furthermore, we propose an importance measure that combines the
spatial persistence of a critical point with its temporal evolution. This
leads to a time-aware feature hierarchy, which allows us to discriminate
important from spurious features. Our method requires only a single,
easy-to-tune computational parameter and is naturally formulated in an
out-of-core fashion, which enables the analysis of large data sets. We apply
our method to a number of data sets and compare it to the stabilized
continuous Feature Flow Field tracking algorithm.
A framework is proposed for extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance. The minima of the acceleration magnitude, i.e. a superset of the acceleration zeros, are extracted and discriminated into vortices and saddle points --- based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These features are tracked in time with a robust algorithm for tracking features. Thus a space-time hierarchy of the minima is built and vortex merging events are detected. The acceleration feature extraction strategy is applied to three two-dimensional shear flows:
(1) an incompressible periodic cylinder wake,
(2) an incompressible planar mixing layer and
(3) a weakly compressible planar jet.
The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of pressure field and minima of λ2.