### Refine

#### Year of publication

#### Document Type

- ZIB-Report (29)
- In Proceedings (14)
- Article (8)
- Book chapter (7)
- Master's Thesis (2)
- Book (1)
- Doctoral Thesis (1)
- Other (1)

#### Is part of the Bibliography

- no (63)

#### Keywords

- online algorithms (5)
- online optimization (4)
- Online-Optimierung (3)
- elevator control (3)
- probabilistic analysis (3)
- Aufzugssteuerung (2)
- Stochastische Dominanz (2)
- acyclic orientations (2)
- bipolar orientations (2)
- branch-and-bound (2)

Algorithmic control of elevator systems has been studied for a long time. More recently, a new paradigm for elevator control has emerged. In destination call systems, the passenger specifies not only the direction of his ride, but the destination floor. Such a destination call system is very interesting from an optimization point of view, since more information is available earlier, which should allow improved planning. However, the real-world destination call system envisioned by our industry partner requires that each destination call (i.e. passenger) is assigned to a serving elevator immediately. This early assignment restricts the potential gained from the destination information. Another aspect is that there is no way to specify the destination floor in the cabin. Therefore, the elevator has to stop on every destination floor of an assigned call, although the passenger may not have boarded the cabin, e.g. due to insufficient capacity. In this paper we introduce a new destination call control algorithm suited to this setting. Since the control algorithm for an entire elevator group has to run on embedded microprocessors, computing resources are very scarce. Since exact optimization is not feasible on such hardware, the algorithm is an insertion heuristic using a non-trivial data structure to maintain a set of tours. To assess the performance of our algorithm, we compare it to similar and more powerful algorithms by simulation. We also compare to algorithms for a conventional system and with a more idealized destination call system. This gives an indication of the relative potentials of these systems. In particular, we assess how the above real-world restrictions influence performance. The algorithm introduced has been implemented by our industry partner for real-world use.

In \emph{classical optimization} it is assumed that full information about the problem to be solved is given. This, in particular, includes that all data are at hand. The real world may not be so nice'' to optimizers. Some problem constraints may not be known, the data may be corrupted, or some data may not be available at the moments when decisions have to be made. The last issue is the subject of \emph{online optimization} which will be addressed here. We explain some theory that has been developed to cope with such situations and provide examples from practice where unavailable information is not the result of bad data handling but an inevitable phenomenon.

Under high load, the automated dispatching of service vehicles for the German Automobile Association (ADAC) must reoptimize a dispatch for 100--150 vehicles and 400 requests in about ten seconds to near optimality. In the presence of service contractors, this can be achieved by the column generation algorithm ZIBDIP. In metropolitan areas, however, service contractors cannot be dispatched automatically because they may decline. The problem: a model without contractors yields larger optimality gaps within ten seconds. One way-out are simplified reoptimization models. These compute a short-term dispatch containing only some of the requests: unknown future requests will influence future service anyway. The simpler the models the better the gaps, but also the larger the model error. What is more significant: reoptimization gap or reoptimization model error? We answer this question in simulations on real-world ADAC data: only the new model ZIBDIP{\footnotesize dummy} can keep up with ZIBDIP.

The Dynamic Multi-Period Routing Problem DMPRP introduced by Angelelli et al. gives a model for a two-stage online-offline routing problem. At the beginning of each time period a set of customers becomes known. The customers need to be served either in the current time period or in the following. Postponed customers have to be served in the next time period. The decision whether to postpone a customer has to be done online. At the end of each time period, an optimal tour for the customers assigned to this period has to be computed and this computation can be done offline. The objective of the problem is to minimize the distance traveled over all planning periods assuming optimal routes for the customers selected in each period. We provide the first randomized online algorithms for the DMPRP which beat the known lower bounds for deterministic algorithms. For the special case of two planning periods we provide lower bounds on the competitive ratio of any randomized online algorithm against the oblivious adversary. We identify a randomized algorithm that achieves the optimal competitive ratio of $\frac{1+\sqrt{2}}{2}$ for two time periods on the real line. For three time periods, we give a randomized algorithm that is strictly better than any deterministic algorithm.

This extended abstract is about algorithms for controlling elevator systems employing destination hall calls, i.e. the passenger provides his destination floor when calling an elevator. We present the first exact algorithm for controlling a group of elevators and report on simulation results indicating that destination hall call systems outperform conventional systems.

The task of an elevator control is to schedule the elevators of a group such
that small waiting and travel times for the passengers are obtained. We present an exact
reoptimization algorithm for this problem. A reoptimization algorithm computes a
new schedule for the elevator group each time a new passenger arrives. Our algorithm
uses column generation techniques and is, to the best of our knowledge, the first exact
reoptimization algorithms for a group of passenger elevators. To solve the column
generation problem, we propose a Branch & Bound method.

This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for
the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic
comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic
picture than competitive analysis and explains the behavior observed in simulations.

We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm.
We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.

In the last 20 years competitive analysis has become the main tool for
analyzing the quality of online algorithms. Despite of this,
competitive analysis has also been criticized: It sometimes cannot
discriminate between algorithms that exhibit significantly different
empirical behavior, or it even favors an algorithm that is worse from
an empirical point of view. Therefore, there have been several
approaches to circumvent these drawbacks. In this survey, we discuss
probabilistic alternatives for competitive analysis.

It is well known that competitive analysis yields too pessimistic results when applied to the paging problem and it also cannot make a distinction between many paging strategies. Many deterministic paging algorithms achieve the same competitive ratio, ranging from inefficient strategies as flush-when-full to the good performing least-recently-used (LRU). In this paper, we study this fundamental online problem from the viewpoint of stochastic dominance. We show that when sequences are drawn from distributions modelling locality of reference, LRU is stochastically better than any other online paging algorithm.