Lineare Gleichungssysteme modulo T

Please always quote using this URN: urn:nbn:de:0297-zib-71560
  • Mit dem Voranschreiten der Technologie erhalten die öffentlichen Verkehrsmittel eine größere Bedeutung. Die Beförderung mehrerer Personen eröffnet der Gesellschaft viele Möglichkeiten, unter Anderem den Vorteil der Zeitersparnis. Die Dauer des Verkehrswegs mit öffentlichen Verkehrsmitteln ist häufig geringer, als die mit individuellen Verkehrsmitteln. Jedes öffentliche Transportmittel ist mit einem Fahrplan versehen. Dieser bietet Passagieren, die öffentliche Verkehrsmittel öfter nutzen, eine Strukturierung und Planung ihrer Zeit. Dabei lassen sich Taktfahrpläne aufgrund ihres periodischen Verhaltens leicht einprägen. Dieses periodische Verhalten ist durch mathematische Modellierungen darstellbar. Das persönliche Nutzverhalten vieler Bürger im Personenverkehr ist auf die öffentlichen Verkehrsmittel beschränkt. Diese beinhalten im Gegensatz zum individuellen Verkehrsmittel eine Wartezeit. Dabei stellt sich die Frage, ob man anhand mathematischer Modelle diese Wartezeit minimieren kann. Eine bekannte mathematische Modellierung dieses Problems ist das Periodic Event Scheduling Problem (PESP). Die optimale Planung eines periodischen Taktfahrplanes steht im Vordergrund. Während ich dieses Problem betrachtet habe, wurde ich auf das Rechnen mit linearen Gleichungssystemen modulo T aufmerksam. Bei periodischen Taktfahrplänen wird ein einheitliches zeitliches Muster, welches sich nach T Minuten wiederholt, betrachtet. Das dabei zu betrachtende Lösungsproblem eröffnet ein Teilgebiet der Mathematik, welches bislang nicht im Vordergrund stand: Das Lösen linearer Gleichungen modulo T, wobei T für die Zeit in Minuten steht und somit 60 ist. Da 60 keine Primzahl ist, kann – wie im Laufe der Arbeit präsentiert – das lineare Gleichungssystem nicht mehr über einen Körper gelöst werden. Lineare Gleichungssysteme werden nun über Nicht-Körpern betrachtet. Die Literatur weist sowohl im deutschsprachigem als auch im englischsprachigen Raum wenig Umfang bezüglich linearer Gleichungssysteme über Nicht-Körper auf. Der Bestand an Fachliteratur bezüglich den Themen lineare diophantische Gleichungssysteme, Hermite- Normalform und Smith-Normalform ist zurzeit gering, dennoch erreichbar, beispielsweise in [1], welches in dieser Bachelorarbeit genutzt wurde. Insbesondere wurde ich bei der Suche nach geeigneter Literatur zu linearen Gleichungssystemen über Restklassenringe, die keinen Körper bilden, nicht fündig. Dabei recherchierte ich sowohl in den Universitätsbibliotheken als auch in webbasierenden Suchmaschinen. Aufgrund dem geringen Bestand an Fachliteratur in diesem Kontext, war ich gezwungen, an vielen Stellen eigene logische Verknüpfungen zu konzipieren und zu beweisen. Dies brachte viele Schwierigkeiten mit sich, die mit bestmöglichem Verständnis bearbeitet wurden. Abseits der Zugänglichkeit der Literatur, finde ich es sehr überraschend, dass sich viele Professoren der Mathematik mit diesem Themenbereich nicht beschäftigten. Insbesondere gingen von den Dozenten, die ich um Literaturempfehlung bat, kein Werk aus. Damit wurde das Thema "Lineare Gleichungssysteme Modulo T" einerseits eine große Herausforderung, andererseits eine große Motivation, da ich mit dieser Bachelorarbeit vielen Interessenten der Mathematik als Sekundärliteratur dienen kann.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fatima Akil
Document Type:Bachelor's Thesis
MSC-Classification:90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
Granting Institution:Freie Universität Berlin
Advisor:Ralf Borndörfer, Nils Lindner
Year of first publication:2018
Pagenumber:52