Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Cutting Plane Selection for Mixed-Integer Linear Programming

  • Mixed-Integer Linear Programming (MILP) is a ubiquitous and practical modelling paradigm that is essential for optimising a broad range of real-world systems. The backbone of all modern MILP solvers is the branch-and-cut algorithm, which is a hybrid of the branch-and-bound and cutting planes algorithms. Cutting planes (cuts) are linear inequalities that tighten the relaxation of a MILP. While a lot of research has gone into deriving valid cuts for MILPs, less emphasis has been put on determining which cuts to select. Cuts in general are generated in rounds, and a subset of the generated cuts must be added to the relaxation. The decision on which subset of cuts to add is called cut selection. This is a crucial task since adding too many cuts makes the relaxation large and slow to optimise over. Conversely, adding too few cuts results in an insufficiently tightened relaxation, and more relaxations need to be enumerated. To further emphasise the difficulty, the effectiveness of an applied cut is both dependent on the other applied cuts, and the state of the MILP solver. In this thesis, we present theoretical results on the importance and difficulty of cut selection, as well as practical results that use cut selection to improve general MILP solver performance. Improving general MILP solver performance is of great importance for practitioners and has many runoff effects. Reducing the solve time of currently solved systems can directly improve efficiency within the application area. In addition, improved performance enables larger systems to be modelled and optimised, and MILP to be used in areas where it was previously impractical due to time restrictions. Each chapter of this thesis corresponds to a publication on cut selection, where the contributions of this thesis can naturally be divided into four components. The first two components are motivated by instance-dependent performance. In practice, for each subroutine, including cut selection, MILP solvers have adjustable parameters with hard-coded default values. It is ultimately unrealistic to expect these default values to perform well for every instance. Rather, it would be ideal if the parameters were dependent on the given instance. To show this motivation is well founded, we first introduce a family of parametric MILP instances and cuts to showcase worst-case performance of cut selection for any fixed parameter value. We then introduce a graph neural network architecture and reinforcement learning framework for learning instance-dependent cut scoring parameters. In the following component, we formalise language for determining if a cut has theoretical usefulness from a polyhedral point of view in relation to other cuts. In addition, to overcome issues of infeasible projections and dual degeneracy, we introduce analytic center based distance measures. We then construct a lightweight multi-output regression model that predicts relative solver performance of an instance for a set of distance measures. The final two components are motivated by general MILP solver improvement via cut selection. Such improvement was shown to be possible, albeit difficult to achieve, by the first half of this thesis. We relate branch-and-bound and cuts through their underlying disjunctions. Using a history of previously computed Gomory mixed-integer cuts, we reduce the solve time of SCIP over the 67% of affected MIPLIB 2017 instances by 4%. In the final component, we introduce new cut scoring measures and filtering methods based on information from other MILP solving processes. The new cut selection techniques reduce the solve time of SCIP over the 97% of affected MIPLIB 2017 instances by 5%.
Metadaten
Author:Mark TurnerORCiD
Document Type:Doctoral Thesis
Tag:Cut Selection; Cutting Planes; Machine Learning; Mixed-Integer Programming
MSC-Classification:90-XX OPERATIONS RESEARCH, MATHEMATICAL PROGRAMMING
Granting Institution:Technische Universität Berlin
Advisor:Thorsten Koch
Date of final exam:2023/12/01
Year of first publication:2024
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.