Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Predicting Shape Development: A Riemannian Method

  • Predicting the future development of an anatomical shape from a single baseline observation is a challenging task. But it can be essential for clinical decision-making. Research has shown that it should be tackled in curved shape spaces, as (e.g., disease-related) shape changes frequently expose nonlinear characteristics. We thus propose a novel prediction method that encodes the whole shape in a Riemannian shape space. It then learns a simple prediction technique founded on hierarchical statistical modeling of longitudinal training data. When applied to predict the future development of the shape of the right hippocampus under Alzheimer's disease and to human body motion, it outperforms deep learning-supported variants as well as state-of-the-art.
Metadaten
Author:Doğa Türkseven, Islem RekikORCiD, Christoph von TycowiczORCiD, Martin HanikORCiD
Document Type:In Proceedings
Parent Title (English):Shape in Medical Imaging
First Page:211
Last Page:222
Publisher:Springer Nature
Year of first publication:2023
ArXiv Id:http://arxiv.org/abs/2212.04740
DOI:https://doi.org/10.1007/978-3-031-46914-5_17
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.