Refine
Document Type
- Article (6)
- In Proceedings (5)
- Doctoral Thesis (1)
- ZIB-Report (1)
- Research data (1)
- Software (1)
Language
- English (15)
Keywords
- Ancient sundials (1)
- Bi-invariant statistics (1)
- Brain connectomes (1)
- Bézier splines (1)
- Regression in Riemannian manifolds (1)
- Shape analysis (1)
- geometric morphometrics (1)
- geometric statistics (1)
- shape analysis (1)
Institute
We propose generalizations of the T²-statistics of Hotelling and the Bhattacharayya distance for data taking values in Lie groups.
A key feature of the derived measures is that they are compatible with the group structure even for manifolds that do not admit any bi-invariant metric.
This property, e.g., assures analysis that does not depend on the reference shape, thus, preventing bias due to arbitrary choices thereof.
Furthermore, the generalizations agree with the common definitions for the special case of flat vector spaces guaranteeing consistency.
Employing a permutation test setup, we further obtain nonparametric, two-sample testing procedures that themselves are bi-invariant and consistent.
We validate our method in group tests revealing significant differences in hippocampal shape between individuals with mild cognitive impairment and normal controls.
Intrinsic and parametric regression models are of high interest for the statistical analysis of manifold-valued data such as images and shapes. The standard linear ansatz has been generalized to geodesic regression on manifolds making it possible to analyze dependencies of random variables that spread along generalized straight lines. Nevertheless, in some scenarios, the evolution of the data cannot be modeled adequately by a geodesic.
We present a framework for nonlinear regression on manifolds by considering Riemannian splines, whose segments are Bézier curves, as trajectories.
Unlike variational formulations that require time-discretization, we take a constructive approach that provides efficient and exact evaluation by virtue of the generalized de Casteljau algorithm.
We validate our method in experiments on the reconstruction of periodic motion of the mitral valve as well as the analysis of femoral shape changes during the course of osteoarthritis, endorsing Bézier spline regression as an effective and flexible tool for manifold-valued regression.
Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates.
This paper presents the methods and results of the SHREC’21 contest on a dataset of cultural heritage (CH) objects. We present a dataset of 938 scanned models that have varied geometry and artistic styles. For the competition, we propose two challenges: the retrieval-by-shape challenge and the retrieval-by-culture challenge. The former aims at evaluating the ability of retrieval methods to discriminate cultural heritage objects by overall shape. The latter focuses on assessing the effectiveness of retrieving objects from the same culture. Both challenges constitute a suitable scenario to evaluate modern shape retrieval methods in a CH domain. Ten groups participated in the contest: thirty runs were submitted for the retrieval-by-shape task, and twenty-six runs were submitted for the retrieval-by-culture challenge. The results show a predominance of learning methods on image-based multi-view representations to characterize 3D objects. Nevertheless, the problem presented in our challenges is far from being solved. We also identify the potential paths for further improvements and give insights into the future directions of research.
This paper presents the outcomes of a contest organized to evaluate methods for the online recognition of heterogeneous gestures from sequences of 3D hand poses. The task is the detection of gestures belonging to a dictionary of 16 classes characterized by different pose and motion features. The dataset features continuous sequences of hand tracking data where the gestures are interleaved with non-significant motions. The data have been captured using the Hololens 2 finger tracking system in a realistic use-case of mixed reality interaction. The evaluation is based not only on the detection performances but also on the latency and the false positives, making it possible to understand the feasibility of practical interaction tools based on the algorithms proposed. The outcomes of the contest's evaluation demonstrate the necessity of further research to reduce recognition errors, while the computational cost of the algorithms proposed is sufficiently low.
The Sasaki metric is the canonical metric on the tangent bundle TM of a Riemannian manifold M. It is highly useful for data analysis in TM (e.g., when one is interested in the statistics of a set of geodesics in M). To this end, computing the Riemannian logarithm is often necessary, and an iterative algorithm was proposed by Muralidharan and Fletcher. In this note, we derive approximation formulas of the energy gradients in their algorithm that we use with success.
We propose a generic spatiotemporal framework to analyze manifold-valued measurements, which allows for employing an intrinsic and computationally efficient Riemannian hierarchical model. Particularly, utilizing regression, we represent discrete trajectories in a Riemannian manifold by composite Bézier splines, propose a natural metric induced by the Sasaki metric to compare the trajectories, and estimate average trajectories as group-wise trends. We evaluate our framework in comparison to state-of-the-art methods within qualitative and quantitative experiments on hurricane tracks. Notably, our results demonstrate the superiority of spline-based approaches for an intensity classification of the tracks.
Large longitudinal studies provide lots of valuable information, especially in medical applications. A problem which must be taken care of in order to utilize their full potential is that of correlation between intra-subject measurements taken at different times. For data in Euclidean space this can be done with hierarchical models, that is, models that consider intra-subject and between-subject variability in two different stages. Nevertheless, data from medical studies often takes values in nonlinear manifolds. Here, as a first step, geodesic hierarchical models have been developed that generalize the linear ansatz by assuming that time-induced intra-subject variations occur along a generalized straight line in the manifold. However, this is often not the case (e.g., periodic motion or processes with saturation). We propose a hierarchical model for manifold-valued data that extends this to include trends along higher-order curves, namely Bézier splines in the manifold.
To this end, we present a principled way of comparing shape trends in terms of a functional-based Riemannian metric.
Remarkably, this metric allows efficient, yet simple computations by virtue of a variational time discretization requiring only the solution of regression problems.
We validate our model on longitudinal data from the osteoarthritis initiative, including classification of disease progression.
Data sets sampled in Lie groups are widespread, and as with multivariate data, it is important for many applications to assess the differences between the sets in terms of their distributions. Indices for this task are usually derived by considering the Lie group as a Riemannian manifold. Then, however, compatibility with the group operation is guaranteed only if a bi-invariant metric exists, which is not the case for most non-compact and non-commutative groups. We show here that if one considers an affine connection structure instead, one obtains bi-invariant generalizations of well-known dissimilarity measures: a Hotelling $T^2$ statistic, Bhattacharyya distance and Hellinger distance. Each of the dissimilarity measures matches its multivariate counterpart for Euclidean data and is translation-invariant, so that biases, e.g., through an arbitrary choice of reference, are avoided. We further derive non-parametric two-sample tests that are bi-invariant and consistent. We demonstrate the potential of these dissimilarity measures by performing group tests on data of knee configurations and epidemiological shape data. Significant differences are revealed in both cases.