Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

Deterministic and Stochastic Parameter Estimation for Polymer Reaction Kinetics I: Theory and Simple Examples

  • Two different approaches to parameter estimation (PE) in the context of polymerization are introduced, refined, combined, and applied. The first is classical PE where one is interested in finding parameters which minimize the distance between the output of a chemical model and experimental data. The second is Bayesian PE allowing for quantifying parameter uncertainty caused by experimental measurement error and model imperfection. Based on detailed descriptions of motivation, theoretical background, and methodological aspects for both approaches, their relation are outlined. The main aim of this article is to show how the two approaches complement each other and can be used together to generate strong information gain regarding the model and its parameters. Both approaches and their interplay in application to polymerization reaction systems are illustrated. This is the first part in a two-article series on parameter estimation for polymer reaction kinetics with a focus on theory and methodology while in the second part a more complex example will be considered.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Author:Niklas Wulkow, Regina Telgmann, Klaus-Dieter Hungenberg, Christof Schütte, Michael Wulkow
Document Type:Article
Parent Title (English):Macromolecular Theory and Simulations
Year of first publication:2021
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.