Global and Local Mesh Morphing for Complex Biological Objects from microCT Data

Please always quote using this URN: urn:nbn:de:0297-zib-70618
  • We show how biologically coherent mesh models of animals can be created from μCT data to generate artificial yet naturally looking intermediate objects. The whole pipeline of processing algorithms is presented, starting from generating topologically equivalent surface meshes, followed by solving the correspondence problem, and, finally, creating a surface morphing. In this pipeline, we address all the challenges that are due to dealing with complex biological, non-isometric objects. For biological objects it is often particularly important to obtain deformations that look as realistic as possible. In addition, spatially non-uniform shape morphings that only change one part of the surface and keep the rest as stable as possible are of interest for evolutionary studies, since functional modules often change independently from one another. We use Poisson interpolation for this purpose and show that it is well suited to generate both global and local shape deformations.

Download full text files

Export metadata

Metadaten
Author:David KnötelORCiD, Carola Becker, Gerhard Scholtz, Daniel BaumORCiD
Document Type:ZIB-Report
Tag:Geometry processing; Mesh interpolation; microCT
Date of first Publication:2018/10/01
Series (Serial Number):ZIB-Report (18-53)
ISSN:1438-0064
Published in:Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM) 2018
DOI:https://doi.org/10.2312/vcbm.20181243