- Let $G$ be a directed acyclic graph with $n$ arcs, a source $s$ and a sink $t$. We introduce the cone $K$ of flow matrices, which is a polyhedral cone
generated by the matrices $1_P 1_P^T \in R^{n\times n}$, where
$1_P\in R^n$ is the incidence vector of the $(s,t)$-path $P$.
Several combinatorial problems reduce to a linear optimization problem over $K$.
This cone is intractable, but we provide two convergent approximation hierarchies, one of them based on a
completely positive representation of $K$.
We illustrate this approach by computing bounds for a maximum flow problem with pairwise arc-capacities.