• search hit 1 of 1
Back to Result List

A Local-Search Algorithm for Steiner Forest

  • In the Steiner Forest problem, we are given a graph and a collection of source-sink pairs, and the goal is to find a subgraph of minimum total length such that all pairs are connected. The problem is APX-Hard and can be 2 -approximated by, e.g., the elegant primal-dual algorithm of Agrawal, Klein, and Ravi from 1995. We give a local-search-based constant-factor approximati on for the problem. Local search brings in new techniques to an area that has for long not seen any improv ements and might be a step towards a combinatorial algorithm for the more general survivable n etwork design problem. Moreover, local search was an essential tool to tackle the dynamic MST/Stein er Tree problem, whereas dynamic Steiner Forest is still wide open. It is easy to see that any constant factor local search algori thm requires steps that add/drop many edges together. We propose natural local moves which, at each step , either (a) add a shortest path in the current graph and then drop a bunch of inessential edges, or (b) add a s et of edges to the current solution. This second type of moves is motivated by the potential function w e use to measure progress, combining the cost of the solution with a penalty for each connected compon ent. Our carefully-chosen local moves and potential function work in tandem to eliminate bad local min ima that arise when using more traditional local moves. Our analysis first considers the case where the local optimum is a single tree, and shows optimality w.r.t. moves that add a single edge (and drop a set of edges) is enough to bound the locality gap. For the general case, we show how to “project” the optimal solution o nto the different trees of the local optimum without incurring too much cost (and this argument uses opti mality w.r.t. both kinds of moves), followed by a tree-by-tree argument. We hope both the potential funct ion, and our analysis techniques will be useful to develop and analyze local-search algorithms in ot her contexts.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie Schmidt, José Verschae
Document Type:Preprint
Language:English
Date of Publication (online):2017/07/10
Date of first Publication:2017/08/07
Release Date:2017/08/07
Subprojects:A07