
ar
X

iv
:1

70
7.

02
75

3v
1

 [
cs

.D
S]

 1
0

Ju
l 2

01
7

A Local-Search Algorithm for Steiner Forest

Martin Groß∗† Anupam Gupta‡ Amit Kumar§ Jannik Matuschke¶↑

Daniel R. Schmidt‖↑ Melanie Schmidt♯↑ José Verschae♮

July 11, 2017

Abstract

In the Steiner Forest problem, we are given a graph and a collection of source-sink pairs, and the
goal is to find a subgraph of minimum total length such that all pairs are connected. The problem is
APX-Hard and can be 2-approximated by, e.g., the elegant primal-dual algorithm of Agrawal, Klein, and
Ravi from 1995.

We give a local-search-based constant-factor approximation for the problem. Local search brings in
new techniques to an area that has for long not seen any improvements and might be a step towards
a combinatorial algorithm for the more general survivable network design problem. Moreover, local
search was an essential tool to tackle the dynamic MST/Steiner Tree problem, whereas dynamic Steiner
Forest is still wide open.

It is easy to see that any constant factor local search algorithm requires steps that add/drop many edges
together. We propose natural local moves which, at each step, either (a) add a shortest path in the current
graph and then drop a bunch of inessential edges, or (b) add a set of edges to the current solution. This
second type of moves is motivated by the potential function we use to measure progress, combining the
cost of the solution with a penalty for each connected component. Our carefully-chosen local moves and
potential function work in tandem to eliminate bad local minima that arise when using more traditional
local moves.

Our analysis first considers the case where the local optimum is a single tree, and shows optimality w.r.t.
moves that add a single edge (and drop a set of edges) is enough to bound the locality gap. For the
general case, we show how to “project” the optimal solution onto the different trees of the local optimum
without incurring too much cost (and this argument uses optimality w.r.t. both kinds of moves), followed
by a tree-by-tree argument. We hope both the potential function, and our analysis techniques will be
useful to develop and analyze local-search algorithms in other contexts.

∗Institut für Mathematik, Technische Universität Berlin, gross@math.tu-berlin.de.
†Supported by the DFG within project A07 of CRC TRR 154.
‡Department of Computer Science, Carnegie Mellon University, anupamg@cs.cmu.edu.
§Department of Computer Science and Engineering, Indian Institute of Technology, amitk@cse.iitd.ernet.in.
¶TUM School of Management, Technische Universität München, jannik.matuschke@tum.de.
↑Partly supported by the German Academic Exchange Service (DAAD).
‖Institut für Informatik, Universität zu Köln, schmidt@informatik.uni-koeln.de.
♯Institut für Informatik, Universität Bonn, melanieschmidt@uni-bonn.de.
♮Facultad de Matemáticas & Escuela de Ingeniería, Pontificia Universidad Católica de Chile, jverschae@uc.cl. Partly

supported by Nucleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F.

http://arxiv.org/abs/1707.02753v1
gross@math.tu-berlin.de
anupamg@cs.cmu.edu
amitk@cse.iitd.ernet.in
jannik.matuschke@tum.de
schmidt@informatik.uni-koeln.de
melanieschmidt@uni-bonn.de
jverschae@uc.cl

1 Introduction

The Steiner Forest problem is the following basic network design problem: given a graph G = (V, E) with
edge-lengths de, and a set of source-sink pairs {{si, ti}}k

i=1, find a subgraph H of minimum total length
such that each {si, ti} pair lies in the same connected component of H . This problem generalizes the Steiner
Tree problem, and hence is APX-hard. The Steiner Tree problem has a simple 2-approximation, namely the
minimum spanning tree on the terminals in the metric completion; however, the forest version does not have
such obvious algorithms.

Indeed, the first approximation algorithm for this problem was a sophisticated and elegant primal-dual
2-approximation due to Agrawal, Klein, and Ravi [AKR95]. Subsequently, Goemans and Williamson
streamlined and generalized these ideas to many other constrained network design problems [GW95].
These results prove an integrality gap of 2 for the natural cut-covering LP. Other proofs of this integral-
ity gap were given in [Jai01, CS09]. No better LP relaxations are currently known (despite attempts in,
e.g., [KLS05, KLSvZ08]), and improving the approximation guarantee of 2 remains an outstanding open
problem. Note that all known constant-factor approximation algorithms for Steiner Forest were based on
linear programming relaxations, until a recent greedy algorithm [GK15]. In this paper, we add to the body
of techniques that give constant-factor approximations for Steiner Forest. The main result of this paper is
the following:

Theorem 1. There is a (non-oblivious) local search algorithm for Steiner Forest with a constant locality

gap. It can be implemented to run in polynomial time.

The Steiner Forest problem is a basic network problem whose approximability has not seen any improve-
ments in some time. We explore new techniques to attacking the problem, with the hope that these will
give us more insights into its structure. Moreover, for many problems solved using the constrained for-
est approach of [GW95], the only constant factor approximations known are via the primal-dual/local-ratio
approach, and it seems useful to bring in new possible techniques. Another motivation for our work is
to make progress towards obtaining combinatorial algorithms for the survivable network design problem.
In this problem, we are given connectivity requirements between various source-sink pairs, and we need
to find a minimum cost subset of edges which provide this desired connectivity. Although we know a 2-
approximation algorithm for the survivable network design problem [Jai01] based on iterative rounding,
obtaining a combinatorial constant-factor approximation algorithm for this problem remains a central open
problem [WS11]. So far, all approaches of extending primal-dual or greedy algorithms to survivable net-
work design have only had limited success. Local search algorithms are more versatile in the sense that one
can easily propose algorithms based on local search for various network design problems. Therefore, it is
important to understand the power of such algorithms in such settings. We take a step towards this goal by
showing that such ideas can give constant-factor approximation algorithms for the Steiner Forest problem.

Finally, we hope this is a step towards solving the dynamic Steiner Forest problem. In this problem, termi-
nal pairs arrive online and we want to maintain a constant-approximate Steiner Forest while changing the
solution by only a few edges in each update. Several of the approaches used for the Steiner Tree case (e.g.,
in [MSVW12, GGK13, LOP+15]) are based on local-search, and we hope our local-search algorithm for
Steiner Forest in the offline setting will help solve the dynamic Steiner Forest problem, too.

1.1 Our Techniques

One of the challenges with giving a local-search algorithm for Steiner Forest is to find the right set of moves.
Indeed, it is easy to see that simple-minded approaches like just adding and dropping a constant number of
edges at each step is not enough. E.g., in the example of Figure 1, the improving moves must add an edge

1

and remove multiple edges. (This holds even if we take the metric completion of the graph.) We therefore
consider a natural generalization of simple edge swaps in which we allow to add paths and remove multiple
edges from the induced cycle.

Local Moves: Our first task is to find the “right” moves that add/remove many edges in each “local” step.
At any step of the algorithm, our algorithm has a feasible forest, and performs one of these local moves
(which are explained in more detail in §3):

• edge/set swaps: Add an edge to a tree in the forest, and remove one or more edges from the cycle created.
• path/set swaps: Add a shortest-path between two vertices of a tree in the forest, and again remove edges

from the cycle created.
• connecting moves: Connect some trees of the current forest by adding edges between them.

At the end of the algorithm, we apply the following post-processing step to the local optimum:

• clean-up: Delete all inessential edges. (An edge is inessential if dropping it does not alter the feasibility
of the solution.)

Given these local moves, the challenge is to bound the locality gap of the problem: the ratio between the
cost of a local optimum and that of the global optimum.

The Potential: The connecting moves may seem odd, since they only increase the length of the solution.
However, a crucial insight behind our algorithm is that we do not perform local search with respect to
the total length of the solution. Instead we look to improve a different potential φ. (In the terminology
of [Ali94, KMSV98], our algorithm is a non-oblivious local search.) The potential φ(T) of a tree T is the
total length of its edges, plus the distance between the furthest source-sink pair in it, which we call its width.
The potential of the forest A is the sum of the potentials of its trees. We only perform moves that cause the
potential of the resulting solution to decrease.

In §A.2 we give an example where performing the above moves with respect to the total length of the
solution gives us local optima with cost Ω(log n) · OPT — this example is useful for intuition for why
using this potential helps. Indeed, if we have a forest where the distance between two trees in the forest is
much less than both their widths, we can merge them and reduce the potential (even though we increase the
total length). So the trees in a local optimum are “well-separated” compared to their widths, an important
property for our analysis.

The Proof: We prove the constant locality gap in two conceptual steps.

s1 s2 t2 s3 t3 . . . sℓ tℓ t1

ℓ
k 1

ℓ
k 1 1

ℓ
k

ℓ

Figure 1: The black edges (continuous lines) are the current solution. If ℓ ≫ k, we should

move to the blue forest (dashed lines), but any improving move must change Ω(k) edges.

Details can be found in §A.1.

As the first step, we assume
that the local optimum hap-
pens to be a single tree. In this
case we show that the essen-
tial edges of this tree T have
cost at most O(OPT)—hence
the final removal of inessential edges gives a good solution. To prove this, we need to charge our edges to
OPT’s edges. However, we cannot hope to charge single edges in our solution to single edges in OPT—we
need to charge multiple edges in our solution to edges of OPT. (We may just have more edges than OPT
does. More concretely, this happens in the example from Figure 1, when ℓ = Θ(k) and we are at the black
tree and OPT is the blue forest.) So we consider edge/set swaps that try to swap some subset S of T ’s edges
for an edge f of OPT. Since such a swap is non-improving at a local optimum, the cost of S is no more than
that of f . Hence, we would like to partition T ’s edges into groups and find an O(1)-to-1 map of groups to
edges of OPT of no less cost. Even if we cannot find an explicit such map, it turns out that Hall’s theorem is
the key to showing its existence.

2

Indeed, the intuition outlined above works out quite nicely if we imagine doing the local search with respect
to the total length instead of the potential. The main technical ingredient is a partitioning of our edges into
equivalence classes that behave (for our purposes) “like single edges”, allowing us to apply a Hall-type
argument. This idea is further elaborated in §4.1 with detailed proofs in §6. However, if we go back to
considering the potential, an edge/set swap adding f and removing S may create multiple components, and
thus increase the width part of the potential. Hence we give a more delicate argument showing that similar
charging arguments work out: basically we now have to charge to the width of the globally optimal solution
as well. A detailed synopsis is presented in §4.2, and the proofs are in §7.

The second conceptual step is to extend this argument to the case where we can perform all possible local
moves, and the local optimum is a forest A . If OPT’s connected components are contained in those of A , we
can do the above analysis for each A -component separately. So imagine that OPT has edges that go between
vertices in different components of A . We simply give an algorithm that takes OPT and “projects” it down
to another solution OPT′ of comparable cost, such that the new projected solution OPT′ has connected
components that are contained in the components of A . We find the existence of a cheap projected solution
quite surprising; our proof crucially uses the optimality of the algorithm’s solution under both path/set swaps
and connecting moves. Again, a summary of our approach is in §5, with proofs in §8.

Polynomial-time Algorithm. The locality gap with respect to the above moves is at most 46. Finally,
we show that the swap moves can be implemented in polynomial time, and the connecting moves can be
approximated to within constant factors. Indeed, a c-approximation for weighted k-MST gives a 23(1+c)+
ε-approximation. Applying a weighted version of Garg’s 2-approximation [Gar05, Gar16] yields c = 2. The
resulting approximation guarantee is 69 (compared to 96 for [GK15]). Details on this can be found in §B.

1.2 Related Work

Local search techniques have been very successful for providing good approximation guarantees for a variety
of problems: e.g., network design problems such as low-degree spanning trees [FR94], min-leaf spanning
trees [LR96, SO98], facility location and related problems, both uncapacitated [KPR00, AGK+04] and
capacitated [PTW01], geometric k-means [KMN+04], mobile facility location [AFS13], and scheduling
problems [PS15]. Other examples can be found in, e.g., the book of Williamson and Shmoys [WS11]. More
recent are applications to optimization problems on planar and low-dimensional instances [CM15, CG15].
In particular, the new PTAS for low dimensional k-means in is based on local search [CAKM16, FRS16].

Local search algorithms have also been very successful in practice – e.g., the widely used Lin-Kernighan
heuristic [LK73] for the travelling salesman problem, which has been experimentally shown to perform
extremely well [Hel00].

Imase and Waxman [IW91] defined the dynamic Steiner tree problem where vertices arrive/depart online,
and a few edge changes are performed to maintain a near-optimal solution. Their analysis was improved
by [MSVW12, GGK13, GK14, LOP+15], but extending it to Steiner Forest remains wide open.

2 Preliminaries

Let G = (V, E) be an undirected graph with non-negative edge weights de ∈ R≥0. Let n := |V |. For
W ⊆ V , let G[W] = (W, E[W]) be the vertex-induced subgraph, and for F ⊆ E, G[F] = (V [F], F) the
edge-induced subgraph, namely the graph consisting of the edges in F and the vertices contained in them.
A forest is a set of edges F ⊆ E such that G[F] is acyclic.

For a node set W ⊆ V and an edge set F ⊆ E, let δF (W) denote the edges of F leaving W . Let
δF (A : B) := δF (A) ∩ δF (B) for two disjoint node sets A, B ⊆ V be the set of edges that go between A

3

and B. For forests F1, F2 ⊆ E we use δF (F1 : F2) := δF (V [F1] : V [F2]). We may drop the subscript if it
is clear from the context.

Let T ⊆ {{v, v̄} | v, v̄ ∈ V } be a set of terminal pairs. Denote the shortest-path distance between u and
ū in (G, d) by distd(u, ū). Let nt be the number of terminal pairs. We number the pairs according to non-
decreasing shortest path distance (ties broken arbitrarily). Thus, T = {{u1, ū1}, . . . , {unt , ūnt}} and i < j
implies distd(ui, ūi) ≤ distd(uj , ūj). This numbering ensures consistent tie-breaking throughout the paper.
We say that G = (V, E), the weights d and T form a Steiner Forest instance. We often use A to denote
a feasible Steiner forest held by our algorithm and F to denote an optimal/good feasible solution to which
we compare A .

Width. Given a connected set of edges E′, the width w(E′) of E′ is the maximum distance (in the original
graph) of any terminal pair connected by E′: i.e., w(E′) = max{u,ū}∈T,u,ū∈V [E′] distd(u, ū). Notice that
w(E′) is the width of the pair {ui, ūi} with the largest i among all pairs in V [E′]. We set index(E′) :=
max{i | ui, ūi ∈ V [E′]}, i.e., w(E′) = distd(uindex(E′), ūindex(E′)).

For a subgraph G[F] = (V [F], F) given by F ⊆ E with connected components E1, . . . , El ⊆ F , we define
the total width of F to be the sum w(F) :=

∑l
i=1 w(Ei) of the widths of its connected components. Let

d(F) :=
∑

e∈F de be the sum of edge lengths of edges in F and define

φ(F) := d(F) + w(F).

By the definition of the width, it follows that d(F) ≤ φ(F) ≤ 2d(F).

3 The Local Search Algorithm

Our local-search algorithm starts with a feasible solution A , and iteratively tries to improve it. Instead of
looking at the actual edge cost d(A), we work with the potential φ(A) and decrease it over time.

In the rest of the paper, we say a move changing A into A ′ is improving if φ(A ′) < φ(A). A solution A

is <move>-optimal with respect to certain kind of move if no moves of that kind are improving.

a a

b b

c c d d

edge/edge swap

a a

b b

c c d d

edge/set swap

a a

b b

c c d d

path/set swap

a c c

b d d

a b e e

connecting move

untouched by move

added by move

removed by move

Figure 2: Our different moves.

Swaps. Swaps are moves that start with a cycle-free feasible solution A , add some edges and remove
others to get to another cycle-free feasible solution A ′.

• The most basic swap is: add an edge e creating a cycle, remove an edge f from this cycle. This is called
an edge/edge swap (e, f).

• We can slightly generalize this: add an edge e creating a cycle, and remove a subset S of edges from

this cycle C(e). This is called the edge/set swap (e, S). Edge/edge swaps are a special case of edge/set
swaps, so edge/set swap-optimality implies edge/edge swap-optimality.

There may be many different subsets of C(e) we could remove. A useful fact is that if we fix some edge
f ∈ C(e) to remove, this uniquely gives a maximal set R(e, f) ⊆ C(e) of edges that can be removed
along with f after adding e without violating feasibility. Indeed, R(e, f) contains f , and also all edges
on C(e) that can be removed in A ∪ {e}\{f} without destroying feasibility. (See Lemma 13 for a
formalization.)

4

Moreover, given a particular R(e, f), we could remove any subset S ⊆ R(e, f). If we were doing local
search w.r.t. d(A), there would be no reason to remove a proper subset. But since the local moves try to
reduce φ(A), removing a subset of R(e, f) may be useful. If e1, . . . , eℓ are the edges in R(e, f) in the
order they appear on C(e), we only need swaps where S consists of edges ei, . . . , ej that are consecutive
in the above order. There are O(n2) sets S ⊆ R(e, f) that are consecutive.∗ Moreover, there are at most
n − 1 choices for e and O(n) choices for f , so the number of edge/set swaps is polynomial.

• A further generalization: we can pick two vertices u, v lying in some component T , add a shortest-path
between them (in the current solution, where all other components are shrunk down to single points, and
the vertices/edges in T \ {u, v} are removed). This creates a cycle, and we want to remove some edges.
We now imagine that we added a “virtual” edge {u, v}, and remove a subset of consecutive edges from
some R({u, v}, f) ⊆ C({u, v}), just as if we’d have executed an edge/set swap with the “virtual” edge
{u, v}. We call such a swap a path/set swap (u, v, S).

Some subtleties: Firstly, the current solution A may already contain an edge {u, v}, but the uv-shortest-
path we find may be shorter because of other components being shrunk. So this move would add this
shortest-path and remove the direct edge {u, v}—indeed, the cycle C(uv) would consist of two parallel
edges, and we’d remove the actual edge {u, v}. Secondly, although the cycle contains edges from many
components, only edges within T are removed. Finally, there are a polynomial number of such moves,
since there are O(n2) choices for u, v, O(n) choices for f , and O(n2) consecutive removal sets S.

Note that edge/set swaps never decrease the number of connected components of A , but path/set swaps may
increase or decrease the number of connected components.

Connecting moves. Connecting moves reduce the number of connected components by adding a set of
edges that connect some of the current components. Formally, let Gall

A
be the (multi)graph that results from

contracting all connected components of A in G, deleting loops and keeping parallel edges. A connecting

move (denoted conn(T)) consists of picking a tree in Gall
A

, and adding the corresponding edges to A . The
number of possible connecting moves can be large, but Section B.1 discusses how to do this approximately,
using a k-MST procedure.

Note that connecting moves cause d(A ′) > d(A), but since our notion of improvement is with respect to
the potential φ, such a move may still cause the potential to decrease.

In addition to the above moves, the algorithm runs the following post-processing step at the end.

Clean-up. Remove the unique maximal edge set S ⊆ A such that A \ S is feasible, i.e., erase all
unnecessary edges. This might increase φ(A), but it will never increase d(A).

Checking whether an improving move exists is polynomial except for connecting moves, which we can do
approximately (see §B.1). Thus, the local search algorithm can be made to run in polynomial time by using
standard methods (see § B).

4 In Which the Local Optimum is a Single Tree

We want to bound the cost of a forest that is locally optimal with respect to the moves defined above. To
start, let us consider a simpler case: suppose we were to find a single tree T that is optimal with respect to
just the edge/edge and edge/set swaps. (Recall that edge/set swaps add an edge and remove a consecutive

∗In fact, we only need five different swaps (e, S) for the following choices of consecutive sets S: The set S = {f}, the complete
set S = R(e, f), and three sets of the form S = {e1, . . . , ei}, S = {ei+1, . . . , ej} and S = {ej+1, . . . , eℓ} for specific indices i
and j. How to obtain the values for i and j is explained in Section 4.1.

5

subset of the edges on the resulting cycle, while maintaining feasibility. Also, recall that optimality means
that no such moves cause the potential φ to decrease.) Our main result of this section is the following:

Corollary 2. Let G = (V, E) be a graph, let de be the cost of edge e ∈ E and let T ⊆ V × V be a set of

terminal pairs. Let A , F ⊆ E be two feasible Steiner forests for (G, d,T) with V [A] = V [F]. Assume

that A is a tree and that A is swap-optimal with respect to F and φ under edge/edge and edge/set swaps.

Denote by A ′ the modified solution where all inessential edges have been dropped from A . Then,

d(A ′) ≤ 10.5 · d(F) + w(F) ≤ 11.5 · d(F).

The actual approximation guarantee is 42 for this case: indeed, Corollary 2 assumes V [A] = V [F], which
can be achieved (by taking the metric completion on the terminals) at the cost of a factor 2.

The intuition here comes from a proof for the optimality of edge/edge swaps for the Minimum Spanning tree
problem. Let A be the tree produced by the algorithm, and F the reference (i.e., optimal or near-optimal)
solution, with V [A] = V [F]. Suppose we were looking for a minimum spanning tree instead of a Steiner
forest: one way to show that edge/edge swaps lead to a global optimum is to build a bipartite graph whose
vertices are the edges of A and F , and which contains edge (e, f) when f ∈ F can be swapped for e ∈ A

and de ≤ df . Using the fact that all edge/edge swaps are non-improving, we can show that there exists a
perfect matching between the edges in A and F , and hence the cost of A is at most that of F .

Our analysis is similar in spirit. Of course, we now have to (a) consider edge/set swaps, (b) do the analysis
with respect to the potential φ instead of just edge-lengths, and (c) we cannot hope to find a perfect matching
because the problem is NP-hard. These issues make the proofs more complicated, but the analogies still
show through.

4.1 An approximation guarantee for trees and d

In this section, we conduct a thought-experiment where we imagine that we get a connected tree on the
terminals which is optimal for edge/set swaps with respect to just the edge lengths, not the potential. In very
broad strokes, we define an equivalence relation on the edges of A , and show a constant-to-1 cost-increasing
map from the resulting equivalence classes to edges of F—again mirroring the MST analysis—and hence
bounding the cost of A by a constant times the cost of F . The analysis of the real algorithm in §4.2 builds
on the insights we develop here.

Some Definitions. The crucial equivalence relation is defined as follows: For edges e, f ∈ A , let Te,f

be the connected component of A \ {e, f} that contains the unique e-f -path in A . We say e and f are
compatible w.r.t. F if e = f or if there are no F -edges leaving Te,f , and denote it by e ∼cp f . In Lemma 6
we show that ∼cp is an equivalence relation, and denote the set of equivalence classes by S.

An edge is essential if dropping it makes the solution infeasible. If T1, T2 are the connected components
of A \ {e}, then e is called safe if at least one edge from F crosses between T1 and T2. Observe that any
essential edge is safe, but the converse is not true: safe edges can be essential or inessential. However, it turns
out that the set Su of all unsafe edges in A forms an equivalence class of ∼cp. Hence, all other equivalence
classes in S contain only safe edges. Moreover, these equivalence classes containing safe edges behave like
single edges in the following sense. (Proof in Lemma 14 in §6.)

(1) Each equivalence class S lies on a path in A .
(2) For any edge f ∈ F , either S is completely contained in the fundamental cycle CA (f) obtained by

adding f to A , or S ∩ CA (f) = ∅.
(3) If (A \ {e}) ∪ {f} is feasible, and e belongs to equivalence class S, then (A \ S) ∪ {f} is feasible.

(This last property also trivially holds for S = Su.)

6

Charging. We can now give the bipartite-graph-based charging argument sketched above.

Theorem 3. Let I = (V, E,T, d) be a Steiner Forest instance and let F be a feasible solution for I .

Furthermore, let A ⊆ E be a feasible tree solution for I . Assume that V [F] = V [A]. Let ∆ : S → R be

a cost function that assigns a cost to all S ∈ S. Suppose that ∆(S) ≤ df for all pairs of S ∈ S \ {Su} and

f ∈ F such that the cycle in A ∪ {f} contains S. Then,

∑

S∈S\{Su}

∆(S) ≤
7

2
·
∑

f∈F

df .

Proof. Construct a bipartite graph H = (A ∪ B, E(H)) with nodes A := {aS | S ∈ S \ {Su}} and
B := {bf | f ∈ F}. Add an edge {aS , bf } whenever f closes a cycle in A that contains S. By our
assumption, if {aS , bf } ∈ E(H) then ∆(S) ≤ df . Suppose that we can show that 7

2 · |N(X)| ≥ |X|
for all X ⊆ A, where N(X) ⊆ B is the set of neighbors of nodes in X. By a generalization of Hall’s
Theorem (stated as Fact 15 in §6), this condition implies that there is an assignment α : E → R+ such that
∑

e∈δH(a) α(e) ≥ 1 for all a ∈ A and
∑

e∈δH (b) α(e) ≤ 7
2 for all b ∈ B. Hence

∑

S∈S\{Su}

∆(S) ≤
∑

S∈S\{Su}

∑

e∈δH (aS)

α(e)∆(S) =
∑

f∈F

∑

e∈δH (bf)

α(e)∆(S) ≤
∑

f∈F

∑

e∈δH (bf)

α(e)df ≤
7

2

∑

f∈F

df .

It remains to show that 7
2 ·|N(X)| ≥ |X| for all X ⊆ A. To that aim, fix X ⊆ A and define S′ := {S | aS ∈

X}. In a first step, contract all e ∈ U :=
⋃

S∈S\S′ S in A , and denote the resulting tree by A ′ := A �U .†

Note that edges in each equivalence class are either all contracted or none are contracted. Also note that all
unsafe edges are contracted, as Su /∈ S′. Apply the same contraction to F to obtain F ′ := F�U , from
which we remove all loops and parallel edges.

Let f ∈ F ′. Since A ′ is a tree, f closes a cycle C in A ′ containing at least one edge e ∈ A ′. Denoting
the equivalence class of e by Se, observing that all edges in A ′ are safe, and using property (2) given above
(formally, using Lemma 14(c)), we get that cycle C contains Se. Hence the node bf ∈ B corresponding to
f belongs to N(aSe) ⊆ N(X). Thus, |N(X)| ≥ |F ′| and it remains to show that 7

2 |F ′| ≥ |X|.

We want to find a unique representative for each aS ∈ X. So we select an arbitrary root vertex r ∈ V [A ′]
and orient all edges in A ′ away from r. Every non-root vertex now has exactly one incoming edge. Every
equivalence class S ∈ S′ consists only of safe edges, so it lies on a path (by Lemma 14(a)). Consider the
two well-defined endpoints which are the outermost vertices of S on this path. For at least one of them, the
unique incoming edge must be an edge in S. We represent S by one of the endpoints which has this property
and call this representative rS . Let R ⊆ V [A ′] be the set of all representative nodes. Since every vertex has
an unique incoming edge, S 6= S′ implies that rS 6= rS′ . Hence |R| = |S′| = |X|. Moreover, let R1 and
R2 be the representatives with degrees 1 and 2 in A ′, and L be the set of leaves of A ′. As the number of
vertices of degree at least 3 in a tree is bounded by the number of its leaves, the number of representatives
of degree at least 3 in A ′ is bounded by |L|. So |X| ≤ |R1| + |R2| + |L|.

We now show that every v ∈ R2 ∪ L is incident to an edge in F ′. First, consider any v ∈ L and let e be
the only edge in A ′ incident to v. As e is safe, there must be an edge f ∈ F ′ incident to v. Now consider
any rS ∈ R2 and let e1, e2 ∈ A ′ be the unique edges incident to rS . Because rS is the endpoint of the
path corresponding to the equivalence class S, the edges e1 and e2 are not compatible. Hence there must be

†Formally, we define the graph G[T]/e = (V [T]/e, T/e) for a tree T by V [T]/e := V [T] ∪ {uv} \ {u, v} and T/e :=
T \ δ({u, v}) ∪ {{w, uv} | {u, w} ∈ T ∨ {v, w} ∈ T } for an edge e = {u, v} ∈ E, then set G/U := G/e1/e2/ . . . /ek for
U = {e1, . . . , ek} and let T/U be the edge set of this graph. If U ⊆ T , then the contraction causes no loops or parallel edges,
otherwise, we delete all loops or parallel edges.

7

an edge f ∈ F ′ incident to rS . Because R2 and L are disjoint and every edge is incident to at most two
vertices, we conclude that |F ′| ≥ (|R2| + |L|)/2.

Finally, we show that |F ′| ≥ 2
3 |R1|. Let C be the set of connected components of F ′ in G�U . Let

C′ := {T ∈ C | |V [T] ∩ R1| ≤ 2} and C′′ := {T ∈ C | |V [T] ∩ R1| > 2}. Note that no representative
rS ∈ R1 is a singleton as every leaf of A ′ is incident to an edge of F ′. We claim that |T | ≥ |V [T] ∩ R1|
for every T ∈ C′. Assume by contradiction that this was not true and let T ∈ C′ with |T | < |V (T) ∩ R1|.
This means that V [T] ∩ R1 contains exactly two representatives rS , rS′ ∈ R1 and T contains only the edge
{rS , rS′}. Let e ∈ S and e′ ∈ S′ be the edges of A ′ incident to rS and rS′ , respectively. As e and e′ are not
compatible, there must be an edge f ∈ F ′ with exactly one endpoint in {rS , rS′}, a contradiction as this
edge would be part of the connected component T . We conclude that |T | ≥ |V [T] ∩ R1| for every T ∈ C′.
Additionally, we have that |T | ≥ |V [T]| − 1 ≥ 2

3 |V [T]| for all T ∈ C′′ as |V [T]| > 2. Therefore,

|F ′| =
∑

T ∈C

|T | ≥
∑

T ∈C′

|V [T] ∩ R1| +
∑

T ∈C′′

2

3
|V [T] ∩ R1| ≥

2

3
|R1|.

The three bounds together imply |X| ≤ |R1| + |R2| + |L| ≤ 3
2 |F ′| + 2|F ′| = 7

2 |F ′|.

We obtain the following corollary of Theorem 3.

Corollary 4. Let I = (V, E,T, d) be a Steiner Forest instance and let OPT be a solution for I that minimizes

d(OPT) =
∑

e∈OPT de. Let A ⊆ E be feasible tree solution for I that does not contain inessential edges.

Assume V [A] = V [OPT]. If A is edge/edge and edge/set swap-optimal with respect to OPT and d, then it

holds that
∑

e∈A de ≤ (7/2) ·
∑

e∈OPT de.

Proof. Since there are no inessential edges, Su = ∅. We set ∆(S) :=
∑

e∈S de for all S ∈ S. Let f ∈ OPT
be an edge that closes a cycle in A that contains S. Then, (A \ {e}) ∪ {f} is feasible for any single edge
e ∈ S because it is still a tree. By Lemma 14(d), this implies that (A \ S) ∪ {f} is also feasible. Thus, we
consider the swap that adds f and deletes S. It was not improving with respect to d, because A is edge/set
swap-optimal with respect to edges from OPT and d. Thus, ∆(S) =

∑

e∈S de ≤ df , and we can apply
Theorem 3 to obtain the result.

4.2 An approximation guarantee for trees and φ

We now consider the case where a connected tree A is output by the algorithm when considering the
edge/set swaps, but now with respect to the potential φ (instead of just the total length as in the previous
section). These swaps may increase the number of components, which may have large widths, and hence
edge/set swaps that are improving purely from the lengths may not be improving any more. This requires a
more nuanced analysis, though relying on ideas we have developed in the previous section.

Here is the high-level summary of this section. Consider some equivalence class S ∈ S\{Su} of safe edges:
these lie on a path (by Lemma 14(a)), hence look like this:

w0
e1−→ v1 → · · · → w1

e2−→ v2 → · · · → wi−1
ei−→ vi → . . . wℓ(S)−1

eℓ(S)
−−−→ vℓ(S),

where there are ℓ(S) edges and hence ℓ(S) + 1 components formed by deleting S. We let InS be set of
the “inner” components (the ones containing v1, . . . , vℓ(S)−1), and InS′ be the inner components except the
two with the highest widths. Just taking the definition of φ, and adding and subtracting the widths of these
“not-the-two-largest” inner components, we get

φ(A) = w(A) +
∑

e∈Su

de +
∑

S∈S\{Su}

(
ℓ(S)
∑

i=1

dei
−

∑

K∈InS′

w(K)
)

︸ ︷︷ ︸

≤10.5·d(F) by Corollary 18

+
∑

S∈S\{Su}

∑

K∈InS′

w(K)

︸ ︷︷ ︸

≤w(F) by Lemma 22

.

8

As indicated above, the argument has two parts. For the first summation, look at the cycle created by adding
edge f ∈ F to our solution A . Suppose class S is contained in this cycle. We prove that edge/set swap

optimality implies that
∑ℓ(S)

i=1 dei
−
∑

K∈InS′
w(K) is at most 3df . (Think of this bound as being a weak

version of the facts in the previous section, which did not have a factor of 3 but did not consider weights in
the analysis.) Using this bound in Theorem 3 from the previous section gives us a matching that bounds the
first summation by 3 · (7/2) · d(F). (A couple of words about the proofs: the bound above follows from
showing that three different swaps must be non-improving, hence the factor of 3. Basically, we break the
above path into three at the positions of the two components of highest width, since for technical reasons we
do not want to disconnect these high-width components. Details are in §7.1.)

For the second summation, we want to sum up the widths of all the “all-but-two-widest” inner compo-
nents, over all these equivalence classes, and argue this is at most w(F). This is where our notions of safe
and compatible edges comes into play. The crucial observations are that (a) given the inner components
corresponding to some class S, the edges of some class S′ either avoid all these inner components, or lie
completely within some inner component; (b) the notion of compatibility ensures that these inner compo-
nents correspond to distinct components of F , so we can get more width to charge to; and (c) since we
don’t charge to the two largest widths, we don’t double-charge these widths. The details are in §7.3.

5 In Which the Local Optimum may be a Forest

The main theorem. In the general case, both A and F may have multiple connected components. We
assume that the distance function d is a metric. The first thing that comes to mind is to apply the previous
analysis to the components individually. Morally, the main obstacle in doing so is in the proof of Theorem 3:
There, we assume implicitly that no edge from F goes between connected components of A .‡ This is
vacuously true if A is a single tree, but may be false if A is disconnected. In the following, our underlying
idea is to replace F -edges that cross between the components of A by edges that lie within the components
of A , thereby re-establishing the preconditions of Theorem 3. We do this in a way that F stays feasible,
and moreover, its cost increases by at most a constant factor. This allows us to prove that the local search
has a constant locality gap.

Reducing to local tree optima. Suppose F has no inessential edges to start. Then we convert F into
a collection of cycles (shortcutting non-terminals), losing a factor of 2 in the cost. Now observe that each
“offending” F -edge (i.e., one that goes between different components of A) must be part of a path P in F

that connects some s, s̄, and hence starts and ends in the same component of A . This path P may connect
several terminal pairs, and for each such pair s, s̄, there is a component of A that contains s and s̄. Thus,
P could be replaced by direct connections between s, s̄ within the components of A . This would get rid
of these “offending” edges, since the new connections would stay within components of A . The worry is,
however, that this replacement is too expensive. We show how to use connecting tree moves to bound the
cost of the replacement.

Consider one cycle from F , regarded as a circuit C in the graph GA where the connected components
A1, . . . , Ap of A are shrunk to single nodes, i.e., C consists of offending edges. The graph GA might
contain parallel edges and C might have repeated vertices. So C is a circuit, meaning that it is a potentially
non-simple cycle, or, in other words, a Eulerian multigraph. The left and middle of Figure 3 are an example.

Index the Aj’s such that w(A1) ≤ · · · ≤ w(Ap) and say that node j in GA corresponds to Aj . Suppose
C visits the nodes v1, . . . , v|C|, v1 (where several of these nodes may correspond to the same component
Aj) and that component Aj is visited nj times by C . In the worst case, we may need to insert nj different

‡More precisely, we need the slightly weaker condition that for each node t ∈ V [A], there is an F -edge incident to t that does
not leave the connected component of A containing t.

9

s, s̄ connections into component Aj of A , for all j. The key observation is that the total cost of our direct

connections is at most
∑|C|

i=1 niw(Ai). We show how to pay for this using the length of C .§

To do so, we use optimality with respect to all moves, in particular connecting moves. The idea is simple:
We cut C into a set of trees that each define a valid connecting move. For each tree, the connecting move
optimality bounds the widths of some components of A by the length of the tree. E.g., w(A1) + w(A4)
is at most the length of the tree connecting A1, A4, A5 in Figure 3. Observe that we did not list w(A5):
Optimality against a connecting move with tree T relates the length of T to the width of all the components
that T connects, except for the component with maximum width. We say a tree pays for Aj if it hits Aj ,
and also hits another Aj of higher width. So we need three properties: (a) the trees should collectively pack
into the edges of the Eulerian multigraph C , (b) each tree hits each component Aj at most once, and (c) the
number of trees that pay for Aj is at least nj .

Assume that we found such a tree packing. For circuit C , if Aj⋆ is the component with greatest width hit by
C , then using connecting move optimality for all the trees shows that

∑

j:Aj hit by C,j 6=j⋆

nj w(Aj) ≤ d(C).

In fact, even if we have c-approximate connection-move optimality, the right-hand side just gets multiplied
by c. But what about nj⋆w(Aj⋆)? We can cut C into sub-circuits, such that each subcircuit C ′ hits Aj⋆

exactly once. To get this one extra copy of w(Aj⋆), we use path/set swap optimality which tells us that the
missing connection cannot be more expensive than the length of C . Thus, collecting all our bounds (see
Lemma 36), adding all the extra connections to F increases the cost to at most 2(1 + c)d(F): the factor 2
to make F Eulerian, (1 + c) to add the direct connections, using c-approximate optimality with respect to
connecting moves and optimality with respect to path/set swaps. §B.2 discusses that c ≤ 2.

Now each component Aj of A can be treated separately, i.e., we can use Corollary 2 on each Aj and the
portion of F that falls into Aj . By combining the conclusions for all connected components, we get that

d(A ′)
Cor. 2

≤ 10.5d(F ′) + w(F ′) ≤ 11.5d(F ′)
Lem. 36

≤ 23(1 + c) · d(F) ≤ 69 · d(F)

for any feasible solution F . This proves Theorem 1.

Obtaining a decomposition into connecting moves. It remains to show how to take C and construct the
set of trees. If C had no repeated vertices (it is a simple cycle) then taking a spanning subtree would suffice.
And even if C has some repeated vertices, decomposing it into suitable trees can be easy: E.g., if C is the
“flower” graph on n vertices, with vertex 1 having two edges to each vertex 2, . . . , n. Even though 1 appears
multiple times, we find a good decomposition (see Figure 4). Observe, however, that breaking C into simple
cycles and than doing something on each simple cycle would not work, since it would only pay 1 multiple
times and none of the others.

The flower graph has a property that is a generalization of a simple cycle: We say that C is minimally
guarded if (a) the largest vertex is visited only once (b) between two occurrences of the same (non-maximal)
vertex, there is at least one larger number. The flower graph and the circuit at the top of Figure 5 have
this property. We show that every minimally guarded circuit can be decomposed suitably by providing
Algorithm 1. It iteratively finds trees that pay for all (non maximal) j with j ≤ z for increasing z. Figure 5
shows how the set of trees M5 is converted into M6 in order to pay for all occurrences of 6. Intuitively, we
look where 6 falls into the trees in M5. Up to one occurrence can be included in a tree. If there are more
occurrences, the tree has to be split into multiple trees appropriately. §8.1.2 explains the details.

Finally, Lemma 35 shows how to go from minimally guarded circuits to arbitrary C in a recursive fashion.
§We also need to take care of the additional width of the modified solution, but this is the easier part.

10

A1
A4

A5

A7

1

4

5

7

C

A1
A4

A5

A7

Figure 3: The charging argument with four components A1, A4, A5 and A7 of A . The area of each component corresponds to
its width. On the left. A cycle in F . In the middle. The corresponding circuit (non-simple cycle) in GA . On the right. A suitable
decomposition into connecting moves.

1 2

34

5

6 7

1 2

34

5

6 7

1 21

3

1

4

15 1

6

1

7

Figure 4: A flower graph. Even though the graph is a non-simple cycle, we can easily decompose it into
trees that pay for each j 6= 6 at least nj times (1 is payed for 7 = n1 + 1 times).

7

v1

1

v2

2

v3

1

v4

4

v5

1

v6

2

v7

5

v8

1

v9

3

v10

2

v11

7

v12

C

M5 7 2 4

5 5 3
3 2

4 2

M6 7 1 2

4 5
5 1 3

3 2
4 1 2

2 1

Figure 5: Two iterations of an example run of the Algorithm 1.

6 Proofs: Bounds on d when the Local Optimum is a Tree

Let A , F ⊆ E be two feasible Steiner forests with respect to a set T of terminal pairs. We think of F

as an optimum or near optimum Steiner forest and of A as a feasible solution computed by our algorithm.
We assume that V [A] = V [F] (this will be true when we use the results from this section later on).
Throughout this section, we assume that A is a tree (thus, it is a spanning tree on V [A] = V [F]). The
following definition is crucial for our analysis.

Definition 5. Let e = {s, v1}, f = {vl, t} ∈ A be two edges. Consider the unique (undirected) path

P = s
e
−→ v1 → · · · → vl

f
−→ t in A that connects e and f . Let Te,f be the connected component in

11

v1 v2 vi vi+1 vs−1 vs

Te,f Tf,g

e f g

(a) First case: Edge f lies on the path from e to g. If
an F -edge is cut by Tf,g, the edges f and g cannot be
compatible. Likewise, e and f cannot be compatible
if an F -edge is cut by Te,f . Thus, no F -edge is cut
by Te,f ∪ Tf,g and e and g are compatible.

w1 w2 v1 v2 vs−1 vs

Tf Te,f Tf,g Tg

f e g

(b) Second case: The path connecting f to the path
P from e to g touches an outer node of P . There can
be no F -edge between Tf,g and Tf ∪ Te,f because
e and f are compatible. Likewise, no F -edge can
cross from Tf,g to Tg because f and g are compatible.
This shows that no F -edge is cut by Tf,g and thus, e
and g are compatible.

v

v2

vs−1

v1

vs

w2

w1

Te

Te,f,g

Tf

Tg

e
g

f

(c) Third case: The path connecting f to the path P
from e to g touches an inner node v of P . Here, no
F -edge can cross from Te,f,g to Te nor from Tf to
Tg since e and f are compatible. The edges f and g
being compatible, there also cannot be F -edges from
Te,f,g to Tg nor from Te to Tf . Thus, no F -edge is
cut by Te,f,g ∪ Tf and thus, the edges e and g are
compatible.

Figure 6: The situation in Lemma 6.

A \ {e, f} that contains P \ {e, f}. We say that e and f are compatible with respect to F if e = f or if

there are no F -edges leaving Te,f . In this case, we write e ∼cp f .

Observe that ∼cp is a reflexive and symmetric relation. We show that the relation is also transitive, i.e., it is
an equivalence relation.

Lemma and Definition 6. Let A be feasible and let e, f ∈ A and f, g ∈ A be two pairs of compatible

edges. Then, e and g are also compatible. In particular, ∼cp is an equivalence relation. We denote the set

of all equivalence classes of ∼cp by S.

Proof. Consider the unique path P that connects e and g in A . This path has the form v1
e
−→ v2 → · · · →

vs−1
g
−→ vs. We distinguish three cases (see Figure 6).

For the first case, suppose that f = {vi, vi+1} lies on P , for some i ∈ {2, . . . , s − 2}. Let Te,f and Tf,g be
the connected components of A \{e, f, g} that contain v2, . . . , vi and vi+1, . . . , vs−1, respectively. Assume
by contradiction that δF (Te,g) 6= ∅. Since δF (Te,g) 6= ∅, it follows that δF (Te,f) 6= ∅ or δF (Tf,g) 6= ∅.
This is a contradiction to the assumption that e, f and f, g are compatible, respectively.

For the second case, suppose that f does not lie on P . Let R be the unique, possibly empty, path that
connects f to P and suppose that R meets P at one of the outer nodes (w.l.o.g. assume that P and R meet

in v1). Thus, we are in the situation where R ∪ P has the form w1
f
−→ w2 → · · · → wt → v1

e
−→ v2 · · · →

vs−1
g
−→ vs. Consider the four connected components that A \ {e, f, g} decomposes into: The component

Tf contains w1, the component Tf,e contains w2, . . . , wt, v1, the component Te,g contains v2, . . . , vs−1 and
Tg contains vs. If R is empty, the nodes w2, wt and v1 coincide and Tf,e contains only v1. Both the cuts
δF (Te,g : Tg) and δF (Te,g : Tf) must be empty because f and g are compatible. The cut δF (Te,g : Tf,e)
must be empty because e and f are compatible. It follows that e and g are compatible.

For the last remaining case, suppose that f does not lie on P and that the unique path R connecting f to

12

v0

v2

v3

v1

T2

T0

T1

T3

e2

e3

e1

Figure 7: The situation from the proof of Lemma 12. Since e1, e2, and e3 are pairwise compatible, no
F -edge can leave T1.

R meets P in an inner node vi, i ∈ {2, . . . , s − 1}. Here, R has the form w1
f
−→ w2 → · · · → wt → vi

and A \ {e, f, g} decomposes into four components: The component Te contains v1, the component Te,f,g

contains v2, . . . , vs−1 and w2, . . . , wt, the component Tg contains vs and the component Tf contains w1. The
cuts δF (Tf : Tg) and δF (Te,f,g : Te) must be empty because e and f are compatible. The cuts δF (Tf : Te)
and δF (Te,f,g : Tg) must be empty because f and g are compatible. Thus, the edges e and g are compatible.
This concludes the proof.

We classify the edges in A with respect to F and T. Recall that we assume V [A] = V [F], and that A is
a tree, thus, it is a spanning tree on the vertices that we are interested in.

Definition 7. An edge e ∈ A is essential if A is feasible with respect to T, but A \ {e} is infeasible with

respect to T.

Definition 8. Let e ∈ A and let T1, T2 be the connected components of A \ {e}. We say that e is safe if

δF (T1) = δF (T2) 6= ∅, i.e., if at least one F -edge crosses between T1 and T2.

By definition, any essential edge is safe, however, the opposite is not true in general: Safe edges can be
essential or inessential. We thus have classified the edges of A into three classes: safe essential edges, safe
inessential edges and unsafe (and ergo, inessential) edges.

Lemma 9. Let e, f ∈ A be two compatible edges. Then e is safe if and only if f is safe.

Proof. Suppose that e is safe and let P = v1
e
−→ v2 → · · · → vs−1

f
−→ vs be the unique path between e

and f in A . Let Te, Te,f and Tf be the connected components of A that contain the vertex v1, the vertices
v2, . . . , vs−1 and the vertex vs, respectively. Since e and f are compatible we know that δF (Tf : Te,f)
is empty. Also, since e is safe, we have that δF (Te : Tf) = δF (Tf : Te) is non-empty. It follows from
δF (Tf) = δF (Tf : Te) ∪ δF (Tf : Te,f) that f is safe. The reverse implication follows since e and f are
exchangeable.

Lemma 10. Let e, f ∈ A be two unsafe edges. Then e and f are compatible.

Proof. Let P = v1
e
−→ v2 → · · · → vs−1

f
−→ vs be the unique path between e and f in A . Let Te,

Te,f and Tf be the connected components of A that contain the vertex v1, the vertices v2, . . . , vs−1 and
the vertex vs, respectively. We need to show that δF (Te : Te,f) = δF (Tf : Te,f) = ∅. Observe that
δF (Te : Te,f) ⊆ δF (Te) and that δF (Tf : Te,f) ⊆ δF (Tf). The assumption that e and f are both unsafe
implies that δF (Te) = δF (Tf) = ∅ and we have thus shown the claim.

We have the following summary lemma showing that ∼cp behaves well.

13

Lemma 11. Let e, f ∈ A be compatible edges. Then

1. e is essential if and only if f is essential and

2. e is safe if and only f is safe.

Furthermore, if two edges e, f ∈ A are unsafe, then they are compatible. Thus, the set

Su := {e ∈ A | e is unsafe}

forms an equivalence class of ∼cp. If S ∈ S is an equivalence class of ∼cp, then either all edges e ∈ S are

essential or none. Also, if S 6= Su, then all edges in S are safe.

Proof. We show Statement 1.

Statement 2 and the compatibility of unsafe edges are shown in Lemma 9 and Lemma 10. Let P = v1
e
−→

v2 → · · · → vs−1
f
−→ vs be the unique path between e and f in A . Let Te, Te,f and Tf be the connected

components of A that contain the vertex v1, the vertices v2, . . . , vs−1 and the vertex vs, respectively. Sup-
pose that e is essential. We show that there must be a terminal pair u, ū with u ∈ Te ∪ Te,f and ū ∈ Tf . It
then follows that A \ {f} is infeasible.

Since the edge e is essential, there must be a terminal pair u, ū with u ∈ Te and ū ∈ Te,f ∪ Tf . Since
e and f are compatible, however, we know that δF (Te : Te,f) = δF (Tf : Te,f) = ∅ which implies that
δF (Te,f) = ∅. Thus, if ū ∈ Te,f , the forest F would be infeasible. It follows that ū ∈ Tf and thus, that f
is essential.

We can now show that the compatibility classes in S \ Su behave as if they were single edges.

Lemma 12. Let K := {e1, . . . , el} ⊆ A with l ≥ 2 be a set of pairwise compatible edges. Furthermore,

suppose that ei ∈ K is safe for all i = 1, . . . , l. Then there is a path P ⊆ A with K ⊆ P .

Proof. For e, f ∈ K let Pe,f be the unique path in A starting with e and ending with f . Define R :=
⋃

e,f∈K Pe,f . Observe that K ⊆ R ⊆ A and that R is a tree whose leaves are all incident to edges in K .
By contradiction assume R is not a path. Then there exists a vertex v0 with |δR(v0)| ≥ 3. In particular,
there are three leaves v1, v2, v3 of R such that the unique v0-vi-paths in R for i ∈ {1, 2, 3} are pairwise
edge-disjoint. Let e1, e2, e3 ∈ K be the edges incident to v1, v2, v3 in R, respectively. Let T0, T1, T2, T3

be the four components of A \ {e1, e2, e3} with vi ∈ Ti for i ∈ {0, 1, 2, 3}, see Figure 7. Observe that
δF (T1 : T0 ∪ T3) = δF (T1 : T0 ∪ T2) = ∅ because e1 ∼cp e2 and e1 ∼cp e3. We deduce that δF (T1) = ∅,
contradicting the fact that e1 is safe.

Lemma 13. Let S ∈ S be an equivalence class of ∼cp and let e ∈ S. Let f ∈ F such that A \ {e} ∪ {f}
is feasible. Then, A \ S′ ∪ {f} is feasible for all S′ ⊆ S.

Proof. If e is inessential, then all edges in S are inessential by Lemma 11. Thus, A \ S is feasible even
without f and we are done. Otherwise, e is essential, which implies that all edges in S are essential by
Lemma 11. So, they are also safe and we can apply 14(b) from Lemma 14. Let T0, . . . , Tl be the connected
components of A \ S in the order they are traversed by the path P containing S. Statement 14(b) implies
that δF (Ti) = ∅ for all i ∈ {1, . . . , l − 1}. Therefore, for every terminal pair {u, ū} ∈ T there either is
an i ∈ {0, . . . , l} with u, ū ∈ Ti, or u ∈ T0 and ū ∈ Tl (w.l.o.g.). Hence the only terminal pairs that are
disconnected by the removal of S are those with u ∈ T0 and ū ∈ Tl. Statement 14(b) also implies that either
f ∈ δF (T0 : Tl) or both endpoints of f are contained in one of the Ti. In the former case, A \ S ∪ {f} is
feasible since T0 ∪Tl is a connected component of this solution. In the latter case, the connected components
of A \ {e} ∪ {f} and A \ {e} are the same, which would imply that A \ {e} is feasible by our assumption,
which is a contradiction to e being essential.

14

Lemma 14. Let S ∈ S\{Su} be an equivalence class of safe edges. Let f ∈ F be an edge.

a. Let K ⊆ S. Then there is a path P ⊆ A with K ⊆ P .

b. Let P ⊆ A be the unique minimal path containing S and let T0, . . . , Tl be the components of A \ S
in the order they are traversed by P . Then either f ∈ δF (T0 : Tl), or there is an i ∈ {0, . . . , l} such

that Ti contains both endpoints of f .

c. Let C be the unique cycle in A ∪ {f}. Then S ⊆ C or S ∩ C = ∅.

d. If A \ {e} ∪ {f} is feasible for some edge e ∈ S, then A \ S′ ∪ {f} is feasible for all S′ ⊆ S. This

also holds for S = Su.

Proof. The proof of 14(a) is done in Lemma 12. For 14(b), denote the edges in S by e1, . . . , el such that
ei is the edge between Ti−1 and Ti for all i ∈ {1, . . . , l}. Since for any i 6= j ∈ {1, . . . , l}, the edges ei and
ej are pairwise compatible, no F -edge can cross between Ti and Tj , for any i 6= j ∈ {1, . . . , l}. Nor can
there be F -edges from T0 to any Ti, for i ∈ {1, . . . , l}, since e1 and ei+1 are compatible. Therefore either
both endpoints of f lie within the same component Ti, or f ∈ δF (T0 : Tl).

Property 14(c) follows from 14(b) for S ∈ S\{Su}. Notice that for any f ∈ F , all edges on C are
automatically safe. Thus, the statement is true for Su as well. Statement 14(d) is proven in Lemma 13.

The following fact is a straightforward generalization of Hall’s theorem and an easy consequence of max
flow/min cut (see, e.g., [CIM09]).

Fact 15. Let G = (A ∪ B, E) be a bipartite graph. For any A′ ⊆ A, let N(A′) ⊆ B be the set of neighbors

of the nodes in A′. If

for all A′ ⊆ A : |N(A′)| ≥ |A′|/c

then there exists an assignment α : E → R+ such that
∑

e∈δ(a) α(e) ≥ 1 for all a ∈ A and
∑

e∈δ(b) α(e) ≤ c
for all b ∈ B.

7 Proofs: Bounds on φ when the Local Optimum is a Tree

Let’s recall (and formalize) some notation from §4.2. Let equivalence class S ∈ S\{Su} of safe edges
contain ℓ(S) edges. By Lemma 14(a), the edges of S = 〈eS,1, . . . , eS,ℓ(S)〉 lie on a path: let

wS,0
eS,1
−−→ vS,1 → · · · → wS,1

eS,2
−−→ vS,2 → · · · → wS,i−1

eS,i
−−→ vS,i → . . . wS,ℓ(S)−1

eS,ℓ(S)
−−−−→ vS,ℓ(S)

be this path, where each eS,i = {wS,i−1, vS,i}. When the context is clear (as it is in this subsection), we use
e1, . . . , eℓ(S) and v1, . . . , vℓ(S), w0, . . . , wℓ(S)−1 instead. Notice that wS,i = vS,i is possible, but we always
have wS,i−1 6= vS,i.

Removing S decomposes A into ℓ(S)+1 connected components. Let the connected component containing
wi be (VS,i, ES,i) and the connected component that contains vℓ(S) be (VS,ℓ(S), ES,i). As in the rest of the
paper, we will associate each components by its edge set. We think of ES,0, ES,ℓ(S) as the outside of the
path that S lies on, and ES,1, . . . , ES,ℓ(S)−1 as the inner components. Note that these components form
vertex-disjoint subtrees of A .

Observation 16. Let S ∈ S\{Su} and i, i′ ∈ {0, . . . , ℓ(S)}, i 6= i′. Then ES,i ∩ ES,i′ = ∅. Also, A is the

disjoint union of ES,0, . . . , ES,ℓ(S) and S.

15

Next, we set m(S) and n(S) to be the index of the inner components with the largest and second-largest
widths, respectively. (We use the indexing index from §2 to break ties, so m(S) := arg maxi=1,...,ℓ(S)−1 index(ES,i),
and n(S) := arg maxi∈{1,...,ℓ(S)−1}\{m(S)} index(ES,i).) Without loss of generality, we assume that the ori-
entation of the path is such that m(S) < n(S). Let InS := {1, 2, . . . , ℓ(S) − 1} be the indices of the inner
components, and InS′ := InS \ {m(S), n(S)}. Now we split the cost of the solution A into three terms. It
holds that

φ(A) = w(A) +
∑

e∈A

df = w(A) +
∑

e∈Su

de +
∑

S∈S\{Su}

∑

e∈S
de

=

(

w(A) +
∑

e∈Su

de

)

+

(

∑

S∈S\{Su}

(ℓ(S)∑

i=1
dei

−
∑

i∈InS

w(ES,i)

))

+

(

∑

S∈S\{Su}

∑

i∈InS

w(ES,i)

)

.

7.1 Bounding the Middle Term

The next lemma and the corollary bound the cost of the middle term.

Lemma 17. Let I = (V, E,T, d) be a Steiner Forest instance and let F be a feasible solution for I .

Furthermore, let A ⊆ E be a feasible tree solution for I that is edge/set swap-optimal with respect to F

and φ. Set S ∈ S\{Su} be an equivalence class of safe edges. Let f ∈ F be an edge that closes a cycle in

A that contains S. Then

df ≥
1

3

(ℓ(S)
∑

i=1

dei
−
∑

i∈InS

wi

)

.

Proof. Since f closes a cycle in A that contains S, any edge e in S satisfies that A \{e}∪{f} is feasible. By
Lemma 14(d), this implies that A \S∪{f} is feasible as well. Thus, adding f and removing any subset S′ ⊆
S is a feasible edge/set swap. We consider three subsets S′

1 := {e1, . . . , em(S)}, S′
2 := {em(S)+1, . . . , en(S)}

and S′
3 := {en(S)+1, . . . , eℓ(S)}. Since A is edge/set swap-optimal with respect to F and φ, we know that

adding f and removing S′
1, S′

2 or S′
3 is not an improving swap. When adding f , we pay df . When removing

S′
1, we gain

∑m(S)
i=1 dei

, but we have to pay the width of the connected components that we create. Notice
that we detach the connected components ES,1, . . . ES,m(S)−1 from the tree. Since ES,m(S) has the maximum

width on the path, the increase in φ that originates from widths has to be
∑m(S)−1

i=1 w(ES,i). Thus, the fact
that the swap is not improving yields that

df +

m(S)−1
∑

i=1

w(ES,i) ≥
m(S)
∑

i=1

dei
⇔ df ≥

m(S)
∑

i=1

dei
−

m(S)−1
∑

i=1

w(ES,i)

Similarly, we gain that

df ≥
n(S)
∑

i=m(S)+1

dei
−

n(S)−1
∑

i=m(S)+1

w(ES,i) and df ≥
ℓ(S)
∑

i=n(S)+1

dei
−

ℓ(S)−1
∑

i=n(S)

w(ES,i)

from the fact that (f, S′
2) and (f, S′

3) are not improving. The statement of the lemma follows by adding the
inequalities and dividing the resulting inequality by three.

Corollary 18. Let I = (V, E,T, d) be a Steiner Forest instance and let F be a feasible solution for I .

Furthermore, let A ⊆ E be a feasible tree solution for I that is edge/edge and edge/set swap-optimal with

16

respect to F and φ. Then,

∑

S∈S\{Su}

(ℓ(S)
∑

i=1

dei
−
∑

i∈InS

w(ES,i)

)

≤ 10.5 ·
∑

e∈F

de.

Proof. We set ∆(S) := 1
3

(
∑ℓ(S)

i=1 dei
−
∑

i∈InS
w(ES,i)

)

. The corollary then follows by Lemma 17 and
Theorem 3.

7.2 Bounding the First Term

The following lemma bounds the first term of the cost.

Lemma 19. Let I = (V, E,T, d) be a Steiner Forest instance and let F be a feasible solution for I with

cc(F) connected components F1, . . . , Fcc(F). Furthermore, let A ⊆ E be a feasible tree solution for I
and recall that Su is the equivalence class of unsafe edges in A . Assume that A is removing swap-optimal.

It holds that

w(A) +
∑

e∈Su

de ≤
cc(F)
∑

i=1

w(Fi).

Proof. A \Su contains |Su|+1 connected components E1, . . . , E|Su|+1, number them by decreasing width,
i.e., w(E1) ≥ w(E2) ≥ . . . ≥ w(E|Su|+1). Since F does not connect them by definition of Su, its
number of connected components satisfies cc(F) ≥ |Su| + 1. Furthermore, any component Ei contains a
component Fj with w(Fj) = w(Ei). Assume that the components are numbered such that w(Fi) = w(Ei)
for i = 1, . . . , |Su| + 1.

Consider the removing swap that removes all edges in Su. Before the swap, A paid all edges and w(A).

After the swap, A would pay all edges except those in Su plus
∑|Su|+1

i=1 w(Ei) =
∑|Su|+1

i=1 w(Fi). Since the
swap was not improving, we know that

w(A) +
∑

e∈A

de ≤
|Su|+1
∑

i=1

w(Fi) +
∑

e∈A

de −
∑

e∈Su

de.

Thus, w(A) +
∑

e∈Su
de ≤

∑|Su|+1
i=1 w(Fi) ≤

∑cc(F)
i=1 w(Fi).

7.3 Bounding the Third Term: Sum of Widths

For the third term, we need a bit more work. The main step is to show that index(ES,i) is an injective
function of S, i when restricting to i ∈ InS . The following lemma helps to prove this statement.

Lemma 20. Let S, S′ ∈ S\{Su} with S 6= S′. Exactly one of the following two cases holds:

• S′ ⊆ ES,0 ∪ ES,ℓ(S), i.e., S′ lies in the outside of the path of S

• There exists i ∈ {1, . . . , ℓ(S) − 1} with S′ ⊆ ES,i.

Proof. Notice that S ∩ S′ = ∅ by definition because S and S′ are different equivalence classes. Let e′, f ′ ∈
S′, i.e., e′, f ′ /∈ S. Assume that e′ ∈ ES,i for an i ∈ {1, . . . , ℓ(S) − 1}, but f ′ /∈ ES,i. Following the
notation on page 15, we denote the unique edges in S that touch ES,i by eS,i and eS,i+1 and their adjacent
vertices in ES,i by vi and wi. Removing eS,i and eS,i+1 creates three connected components in A . The
first component contains ES,0, . . . , ES,i−1 and the edges eS,1, . . . , eS,i−1 and we name it ES,<. The second

17

vi wi

E1
S,< E1

S,i E2
S,i E1

S,>

ei e′ ei+1
f ′ f ′

(a) First case: Removing e′ disconnects vi and wi. Thus, ei, e′ and ei+1 lie on a path. No F -edge can leave
ES,i = E1

S,i ∪ E2
S,i. Also, no F -edge can go between E1

S,i and E2
S,i since e′ and f ′ are compatible. Thus, e′ is

compatible to ei and ei+1.

v2

v3

v1

ES,<

E1
S,i

E2
S,i

ES,>

ei

ei+1

e′

f ′
f ′

(b) Second case: The nodes vi and wi lie in the same connected component when removing e′. Again, no F -edge can
leave ES,i. Also, no edge can go between E1

S,i and E2
S,i because e′ and f ′ are compatible. Thus, e′ is compatible to

ei and ei+1.

Figure 8: Two cases that occur in Lemma 20.

component is ES,i. The third component contains ES,i+1, . . . , ES,ℓ(S) and the edges eS,i+1, . . . , eS,ℓ(S) and
we name it ES,>. Since f ′ /∈ ES,i, and f ′ /∈ S, we know that f ′ ∈ ES,< ∪ ES,>.

Notice that e′ and f ′ are compatible, eS,i and eS,i+1 are compatible, but e′ is not compatible to either
eS,i or eS,i+1. If we remove e′ in addition to eS,i and eS,i+1, then ES,i decomposes into two connected
components, E1

S,i and E2
S,i. We assume without loss of generality that vS,i ∈ E1

S,i. The vertex wS,i can
either be separated from vS,i when removing e′, i.e., wS,i ∈ E2

S,i, or not, i.e., wS,i ∈ E1
S,i. The two cases

are depicted in Figure 8.

If wS,i ∈ E2
S,i, then the edges eS,i, e′ and eS,i+1 lie on a path. No F -edge can leave ES,i = E1

S,i ∪ E2
S,i

because eS,i and eS,i+1 are compatible. Thus, any F -edge leaving E1
S,i has to end in E2

S,i. On the other
hand, consider removing e′ and f ′ from A , which creates three components Te′ , Te′,f ′ , Tf ′ . As both E1

S,i

and E2
S,i are incident to e′, they are contained in two different components, Te′ and Te′,f ′ . Since no edge can

leave Te′,f ′ because e′ and f ′ are compatible, no edge can cross between E1
S,i and E2

S,i. Thus, no F -edges
leave E1

S,i or E2
S,i, which means that e′ is compatible to eS,i and eS,i+1.

If wS,i ∈ E1
S,i, the argument is similar. Still, no F -edge can leave ES,i = E1

S,i ∪ E2
S,i because eS,i and

eS,i+1 are compatible. Also, E1
S,i ⊆ Te′,f ′ and E2

S,i ⊆ Te′ still are in different connected components when
e′ and f ′ are removed. Thus, no F -edge can connect them, and thus e′ is compatible to eS,i and eS,i+1.

Both cases end in a contradiction since e′ cannot be compatible to any edge in S because S and S′ are
different equivalence classes. Thus, e′ ∈ ES,i implies that S ⊆ ES,i. Only if no edge in S′ lies in any
ES,i for i ∈ {1, . . . , ℓ(S) − 1}, then it is possible that edges of S′ lie in ES,0 or ES,ℓ(S). However, then
S′ ⊆ (ES,0 ∪ ES,ℓ(S)).

We set µ(S, i) = index(ES,i) for all S ∈ S \ {Su} and i ∈ InS .

Lemma 21. Let S, S′ ∈ S\{Su}, i ∈ InS , i′ ∈ InS′ . Then

µ(S, i) = µ(S′, i′) ⇒ S = S′ and i = i′,

i.e., the mapping µ is injective.

18

Proof. Let µ(S, i) = µ(S′, i′) and denote by u∗ := uµ(S,i) = uindex(ES,i) and ū∗ := ūµ(S,i) = ūindex(ES,i)

the corresponding terminal pair. By the definition of index, it follows that u∗, ū∗ ∈ VS,i ∩ VS′,i′ and in
particular, we know that VS,i ∩ VS′,i′ 6= ∅. If S = S′, then either i = i′ (and we are done) or i 6= i′ implies
that VS,i ∩ VS′,i′ = ∅ which is a contradiction. Thus, assume in the following that S 6= S′.

Let P be the unique u∗-vS,i-path in ES,i. If P ∩ S′ = ∅, then P ⊆ ES′,i′ because u∗ ∈ VS′,i′ . Thus,
vS,i ∈ VS′,i′ , which also implies that eS,i ∈ ES′,i′ . By Lemma 20, we get S ⊆ ES′,i′ . On the other hand,
if P ∩ S′ 6= ∅, then S′ ⊆ ES,i by Lemma 20. Thus S ⊆ ES′,i′ or S′ ⊆ ES,i. W.l.o.g., we assume the
latter. Now let j ∈ {m(S′), n(S′)} be such that ES′,j ∩ S = ∅ (note that j exists due to Lemma 20).
Because eS′,j, eS′,j+1 ∈ S′ ⊆ ES,i and ES′,j ∩ S = ∅, we deduce that ES′,j ⊆ ES,i. This implies that
µ(S, i) ≥ index(ES′,j) > µ(S′, i′), again a contradiction.

We can now bound the third term of our objective function (see page 16).

Lemma 22. As previously, let S denote the set of all equivalence classes of the compatibility relation ∼cp,

let A be a feasible tree and denote by ES,i the i-th inner connected component on the path that contains

S ∈ S\{Su}. Let F be a feasible Steiner Forest with cc(F) connected components F1, . . . , Fcc(F). Then,

∑

S∈S\{Su}

∑

i∈InS

w(ES,i) ≤
cc(F)
∑

i=1

w(Fi)

Proof. As previously, we set µ(S, i) = index(ES,i) for all S ∈ S \ {Su} and i ∈ InS . We also recall that by
definition, w(ES,i) = dG(uindex(S,i), ūindex(S,i)) = dG(uµ(S,i), ūµ(S,i)) for all S ∈ S \ {Su} and all i ∈ InS .
We thus have

∑

S∈S\{Su}

∑

i∈InS

w(ES,i) =
∑

S∈S\{Su}

∑

i∈InS

dG(uµ(S,i), ūµ(S,i)). (1)

Let χ(S, i) denote the index of the connected component Fχ(S,i) containing the terminal pair uindex(S,i), ūindex(S,i)

in F . We claim that χ is injective. To see this, consider S, S′ ∈ S and i ∈ InS , i′ ∈ InS′ with
χ(S, i) = χ(S′, i′). Since δF (VS,i) = δF (VS′,i′) = ∅ and Fχ(S,i) is connected, we deduce that V [Fχ(S,i)] ⊆
VS,i ∩ VS′,i′ . This implies that uµ(S,i), ūµ(S,i) ∈ VS′,i′ and that uµ(S′,i′), ūµ(S′,i′) ∈ VS,i. Hence µ(S, i) =
µ(S′, i′), which implies S = S′ and i = i′ by Lemma 21.

Since dG(uµ(S,i, ūµ(S,i)) ≤ w(Fχ(S,i)), we can now continue (1) to see that

∑

S∈S\{Su}

∑

i∈InS

dG(uµ(S,i), ūµ(S,i)) ≤
∑

S∈S\{Su}

∑

i∈InS

w(Fχ(S,i)) ≤
cc(F)
∑

i=1

w(Fi).

Here, the last inequality follows from our argument that χ is injective.

7.3.1 Wrapping Things Up

We can now prove the main result of this section.

Theorem 23. Let G = (V, E) be a graph, let de be the cost of edge e ∈ E and let T ⊆ V × V be a terminal

set. Let A , F ⊆ E be two feasible solutions for (G, d,T) with V [A] = V [F]. Furthermore, suppose that

A is a tree and that A is edge/set swap optimal with respect to F and φ. Then,

φ(A) =
∑

e∈A

de + w(A) ≤ 10.5 · d(F) + w(F) +
∑

e∈Su

de + w(A).

In particular, d(A) ≤ 10.5 · d(F) + w(F) +
∑

e∈Su
de.

19

Proof. Rewrite φ(A) as on page 16 to

φ(A) = w(A) +
∑

e∈Su

de +
∑

S∈S\{Su}

(
ℓ(S)
∑

i=1

dei
−
∑

i∈InS

w(ES,i)
)

︸ ︷︷ ︸

≤10.5·d(F) by Corollary 18

+
∑

S∈S\{Su}

∑

i∈InS

w(ES,i)

︸ ︷︷ ︸

≤w(F) by Lemma 22

.

This proves the theorem.

Additionally applying Lemma 19 yields the following reformulation of Theorem 23.

Corollary 24. Let G = (V, E) be a graph, let de be the cost of edge e ∈ E and let T ⊆ V ×V be a terminal

set. Let A , F ⊆ E be two feasible solutions for (G, d,T) with V [A] = V [F]. Furthermore, suppose that

A is a tree and that A is optimal with respect to F and φ under edge/edge, edge/set and removing swaps.

Then,

φ(A) ≤ 10.5 · d(F) + w(F) +
∑

e∈Su

de + w(A) ≤ 10.5 · d(F) + 2w(F) ≤ 10.5 · φ(F)

If we want to bound the original objective function of the Steiner Forest problem, we do not need removing
swaps.

Corollary 2. Let G = (V, E) be a graph, let de be the cost of edge e ∈ E and let T ⊆ V × V be a set of

terminal pairs. Let A , F ⊆ E be two feasible Steiner forests for (G, d,T) with V [A] = V [F]. Assume

that A is a tree and that A is swap-optimal with respect to F and φ under edge/edge and edge/set swaps.

Denote by A ′ the modified solution where all inessential edges have been dropped from A . Then,

d(A ′) ≤ 10.5 · d(F) + w(F) ≤ 11.5 · d(F).

Proof. Let Sis be the set of safe but inessential edges. We have d(A) ≤ 10.5 · d(F) + w(F) +
∑

e∈Su
de

by Theorem 23. That implies
∑

e∈A ′

de = d(A) −
∑

e∈Su

de −
∑

e∈Sis

de ≤ 10.5 · d(F) + w(F) −
∑

e∈Sis

de.

8 Proofs: Bounds when the Local Optimum is a Forest

The aim of this section is to transform (a.k.a. “project”) a pair (A , F) of arbitrary solutions into a pair
(A , F ′) of solutions to which the results from the previous section apply. I.e., each connected component
of F ′ is contained within a connected component of A . The main lemma is

Lemma 36. Let G = (V, E) be a complete graph, let d : E → R≥0 be a metric that assigns a cost de to

every edge e ∈ E and let T ⊆ V × V be a set of terminal pairs. Let A , F ⊆ E be two feasible Steiner

Forest solutions for (G,T). Furthermore, suppose that A is edge/edge, edge/set and path/set swap-optimal

with respect to E and φ, that A is c-approximate connecting move optimal and that A only uses edges

between terminals. Then there exists a feasible solution F ′ with d(F ′) ≤ 2(1 + c) · d(F) that satisfies

F ′ = F ′
� such that A is edge/edge and edge/set swap-optimal with respect to F ′.

We use the notation F� to denote the set of edges in F that go within components of A and F↔ to denote
the set of all edges between different components, and c is the approximation guarantee of the approximate
connecting moves. Formally, c-approximate tree move optimality is defined as follows:

20

Definition 25. A c-approximate connecting move for some constant c ≥ 1 is a connecting move conn(T)
applied to the current solution A using a tree T in Gall

A
such that c · d(T) ≤ w̄(A) − w̄(A ∪ T). A solution

is c-approximate connecting move optimal, if there are no c-approximate connecting moves.

Lemma 36 shows that for any solution F , we can find a solution F ′ with

d(F ′) ≤ 2(1 + c) · d(F)

which does not contain edges between different components of A , i.e., F ′
� = F ′. With Section B.2, we

know that c is at most 2, i.e., we can find F ′ with d(F ′) ≤ 6 · d(F). Every connected component Aj

of A can now be treated separately by using Corollary 2 on Aj and the part of F ′ that falls into Aj . By
combining the conclusions for all connected components, we get that

d(A ′) ≤ 11.5 · d(F ′) ≤ 23(1 + c) · d(F) ≤ 69 · d(F)

for any feasible solution F . This proves the main theorem.

Theorem 1. There is a (non-oblivious) local search algorithm for Steiner Forest with a constant locality

gap. It can be implemented to run in polynomial time.

Proof outline The forest case depends on path/set swaps and connecting moves. Exploiting connecting
move-optimality is the main effort of the section, while path/set swap-optimality is only used to handle one
specific situation.

The goal is to replace F↔ by edges that go within components of A .

We first convert F into a collection of disjoint cycles at the expense of a factor of 2 in the edge costs. Let Fi

be one of the cycles. We want to replace (Fi)↔. To do so, we look at Fi in GA – the graph where the edges
in F� are contracted and loops are removed. In this graph GA , the set (Fi)↔ is a circuit (i.e., a possibly
non-simple cycle). In a first step, we use Algorithm 1 to cope with the case that (Fi)↔ has a special structure
that we call minimally guarded. The second step inductively ensures that this structure is present.

An example run of Algorithm 1 is visualized in Figure 12. The algorithm partitions (Fi)↔ into trees in GA .
These trees define connecting moves, so (approximate) connecting move-optimality gives us a lower bound
on the total edge weight of each tree.

Let nj be the number of times that Fi passes through Aj , the j-th connected component of A . Then the
lower bound that we get is

d((Fi)↔) ≥

p
∑

j=1

njw(Aj)

− njmw(Ajm).

Here, jm is the component with the largest width among all components that Fi touches. In a minimally
guarded circuit, this component is only visited once. The lower bound (for minimally guarded circuits)
results from Lemma 29 and Corollary 34 (notice that nj is defined differently in the actual proof, but we
need less detail here). The part between the two statements establishes invariants of Algorithm 1 that we
need to show that it computes trees with the correct properties.

The lower bound means that we can do the following. Assume that we delete (Fi)↔. Now some vertices in
A do no longer have adjacent F -edges which is a problem for applying Corollary 2. We fix this by inserting
a direct connection to their terminal partner, which has to be in the same component of A . In order to keep
the modified solution feasible, we insert the new connections a bit differently, but with the same result. This

21

connection is paid for by (Fi)↔ which – due to our construction – can give each of these vertices a budget
equivalent to the width of its component. This enables us to use the results from the tree case.

This argument does not work for the vertices in the largest-width component. If Fi is minimally guarded, it
visits the largest width component exactly once and there are exactly two problematic vertices. To reconnect
these vertices, we use path/set swap-optimality and charge (Fi)↔ again to pay for directly connecting them
(this argument comes later, in the proof of Lemma 35, when Corollary 34 is applied).

If otherwise Fi is not minimally guarded, we need a second step. This is taken care of in Lemma 35 which
extends Corollary 34 to guarded circuits that are not necessarily minimal. This is done by applying Corol-
lary 34 to subcircuits and removing these until the minimality criterion is met. The proof is by induction.
Lemma 35 outputs a broken solution F ′ which is not feasible, but is equipped with the widths from the
lower bound. Figures 13 up to 21 show the recursive process for an example circuit and visualize the broken
solution that comes out of it. The solution is then repaired in Lemma 36, giving the final reduction result.

8.1 Details: Getting a Good Tree Packing

While the previous sections operated on arbitrary graphs, we now consider the metric case of the Steiner
forest problem. Consequently, we assume that G = (V, E) is the complete graph on V and that the cost
de = dvw of each edge e = {v, w} ∈ E is given by a metric d : V × V → R≥0. Together with a set of
terminal pairs T ⊆ V , the graph G and the metric d define an instance of the metric Steiner Forest problem.

The more important change in our setting is, however, that we no longer assume that our feasible solution
A ⊆ E is a tree; rather, A can be an arbitrary feasible forest in G. We write its connected components as
A1, . . . , Ap ⊆ A , where the numbering is fixed and such that w(A1) ≤ w(A2) ≤ · · · ≤ w(Ap) holds. As
in the previous sections, we compare A to another solution F .

The connected components of A are trees and it is a natural idea to apply the results from the previous
sections to these trees by considering each connected component of A individually. Morally, the main
obstacle in doing so is the following: In the proof of Theorem 3, we assume implicitly that no F -edge
crosses between connected components of A .¶ This is vacuously true in the case where A is a tree;
however, if A is a forest, this assumption is not justified in general. In the following, our underlying idea is
to replace F -edges that cross between the components of A by edges that lie within the components of A ,
thereby re-establishing the preconditions of Theorem 3. We show how to do this such that F stays feasible
and such that its cost is increased by at most a constant factor.

8.1.1 Notation

We start with some normalizing assumptions on F . As before, we denote the connected components of F

by F1, . . . , Fq ⊆ F . First we can assume that each Fi has no inessential edges. Then, since we are in the
metric case, we can convert each Fi into a simple cycle—this can be done with at most a factor 2 loss in the
cost of F by taking an Euler tour and short-cutting over repeated vertices and non-terminals. This implies
that that V [F] ⊆ V [A], since now F only has terminals, which are all covered by A . Assume that V [A]
only contains terminals. Then, V [F] and V [A] are equal. Recall that T is the set of terminal pairs, let VT

be the set of all terminals. Henceforth, we assume that V = V [F] = V [A] = VT.

Observation 26. Let F , A be feasible solutions and assume that V [A] = VT. Then there exists a solution

F ′ of cost 2 ·
∑

e∈F de +
∑q

i=1 w(Fq) whose connected components are node disjoint cycles and which

satisfies V [F ′] = V [A] = VT.

¶More precisely, we need the slightly weaker condition that for each node t ∈ V [A], there is an F -edge incident to t that does
not leave the connected component of A containing t.

22

A1

A4

A5

A7

1

4

5

7

T1

Figure 9: A simple cycle Fi in G (depicted in blue and black) that induces the blue circuit Ci in GA . Notice
that Ci is not simple. The rounded rectangles represent connected components of A , and their size indicates
their width.

Next, we define a convenient notation for the connected components of A and the F -cycles that pass
through them. For each v ∈ V , we set ξ(v) = j for the unique j ∈ {1, . . . , p} that satisfies that v ∈ Aj , i.e.,
ξ(v) is the index of the connected component of A that contains v. Using this notation, we define a graph
GA = G�{A1, . . . , Ap} = (VA , EA) which results from contracting the connected components of A in
F . We set

VA := {1, . . . , p} and EA := {ef | f = {v, w} ∈ F , ξ(v) 6= ξ(w)}.

It is important that this definition removes all loops induced by the contraction, but it retains possible parallel
edges. In this way, the edges of GA correspond to the edges of F that are crossing between the connected
components of A , while the nodes correspond to the components. Notice that GA can be seen as a subgraph
of Gall

A
defined in the preliminaries for connecting moves. Thus, every tree in GA induces a connecting

move. We extend d to GA by setting def
= df for all ef ∈ EA . We also consider the graph ĜA on VA that

is the transitive closure of GA . For all pairs j1, j2 ∈ VA , it contains an additional edge e′
j1j2

whose weight
de′

j1j2
is given by the length of a shortest j1-j2-path in GA .

For each i ∈ {1, . . . , q}, the simple cycle Fi in G induces a circuit Ci in GA . Figure 9 shows a cycle Fi and
its induced circuit Ci. The edges of Ci correspond to those edges of Fi that we want to replace. Observe that
Ci is indeed not necessarily simple: Whenever Fi revisits the connected component Aj of A , the induced
circuit Ci revisits the same node j ∈ VA . Assume Ci visits exactly s distinct vertices. Then we name them
ξ1, . . . , ξs and assume without loss of generality that ξ1 > · · · > ξs. Since the connected components of A

are numbered according to their width, we know that w(Aξ1) ≥ · · · ≥ w(Aξs), and thus the ξi are ordered
according to the widths of the components as well. Finally, let nℓ be the number of times that Ci visits ξℓ.
In Figure 9, ξ1 = 7, ξ2 = 5, ξ3 = 4, ξ4 = 1, and n1 = 1, n2 = 1, n3 = 2 and n4 = 1.

The crucial idea for the replacement of Ci is to use the connecting move optimality↑ of A to lower bound
d(Ci). Any subgraph of Ci that is a tree in GA induces a connecting move. For an example, consider

↑We will later use approximate moves, but for simplicity, we forget about approximate optimality during this explanation.

23

A1

A4

A5

A7

T1

A1
A4

A5

A7

T2

A1
A4

A5

A7

T3

Figure 10: A partitioning of the blue circuit in Figure 9 into trees T1, T2, T3 in GA . If none of the three
induced connecting moves is improving, then d(T1) ≥ w(A4), d(T2) ≥ w(A4) + w(A1) and d(T3) ≥
w(A4) + w(A1). Thus, we get d(Ci) ≥ 3w(A4) + 2w(A1).

Figure 10. We partitioned the edges in Ci from Figure 9 into three trees. For any Ti among the three trees,
connecting move optimality guarantees that the sum of the edges d(Ti) is at least as expensive as the sum of
the widths of the components that get connected, except for the largest. For example, when adding T1 to the
solution, the edge cost increases by c(T1), but the width cost decreases by w(A4). Thus, d(T1) ≥ w(A4)
when A is connecting move optimal. Since T1, T2 and T3 are a edge-disjoint partitioning of Ci, it holds
that d(Ci) = d(T1) + d(T2) + d(T3) and thus we get d(Ci) ≥ 3w(A4) + 2w(A1) by considering all three
connecting moves.

Now consider Figure 11. Here, we partitioned the edges of Ci into a different set of trees. It turns out that
this partitioning provides a better lower bound on d(Ci), namely w(A5) + 2w(A4) + 2w(A1). In fact, this
lower bound contains w(Aξℓ

) at least nℓ times for all ℓ ∈ {2, 3, 4}. We observe a sufficient condition for
guaranteeing that such a partitioning exists.

Definition 27. We say that a tree pays for ξℓ (once) if it contains ξℓ and at least one vertex ξℓ′ with ξℓ′ > ξℓ.

Definition 28. Let C = (e1, . . . , e|C|) be a circuit in GA that visits the nodes v1, . . . , v|C|+1 = v1 in this

order. We say that C is guarded if we have vi < v1 for all i ∈ {2, . . . , |C|}. A circuit C is minimally
guarded if it is guarded and no subcircuit (vi1 , . . . , vi2) with i1, i2 ∈ {2, . . . , |C|}, i1 < i2 and vi1 = vi2 is

guarded.

Notice that in any guarded circuit, the highest component number only appears once. In Figure 9, Ci is
minimally guarded because the only component visited between the two visits of A4 is A5, which has a
higher index.

Lemma 29. Let C = (e1, . . . , e|C|) be a guarded circuit in GA that visits the nodes v1, . . . , v|C|+1 = v1

in this order. Assume that v1 = v|C|+1 ≥ vi for all j ∈ {2, . . . , |C|} and that {v1, . . . , v|C|} consists of s
disjoint elements ξ1 > ξ2 > . . . > ξs (this means that v1 = ξ1). Furthermore, let nℓ be the number of times

that C visits node ξℓ, for all ℓ = 1, . . . , s. If A is c-approximate connecting move optimal and there exists

a set of trees M in GA that satisfies that

1. all trees in M are edge-disjoint and only contain edges from C and

2. for all ℓ ∈ {2, . . . , s}, there are at least nℓ trees in M that pay for ξℓ,

24

then it holds that
|C|
∑

i=2

w(Avi
) =

s∑

ℓ=2

nℓw(Aξℓ
) ≤ c ·

|C|
∑

i=1

dei
= c · d(C).

Recall that Avi
is the connected component of A that corresponds to the index vi.

Proof. By the first precondition we know that

∑

T ∈M

∑

e∈T

de ≤
|C|
∑

i=1

dei
.

Now notice that every tree in GA and thus every tree in M defines a connecting move. Since A is c-
approximate connecting move optimal, it holds that

∑

v∈V [T]

w(Av) − max
v∈V [T]

w(Av) ≤ c ·
∑

e∈T

de

for every tree T in M. Let low(T) = V [T] \ {maxξi∈T ξi}. Then, we have

|C|
∑

i=2

w(Avi
) =

s∑

ℓ=2

nℓw(Aξℓ
)

2.
≤

s∑

ℓ=2

∑

T ∈M

1low(T)(ξℓ)w(Aξℓ
)

=
∑

T ∈M

s∑

ℓ=2

1low(T)(ξℓ)w(Aξℓ
)

=
∑

T ∈M

∑

v∈low(T)

w(Av)

=
∑

T ∈M

(∑

v∈V [T]

w(Av) − max
v∈V [T]

w(Av)
)

≤ c ·
∑

T ∈M

∑

e∈T

de

and this proves the lemma.

8.1.2 The Partitioning Algorithm

We show how to partition minimally guarded circuits by providing Algorithm 1. It computes a sequence of
sets Mk of trees. For k ∈ {2, . . . , s}, Mk contains a partitioning with ni tree that each pay for ξi once, for
all i ∈ {1, . . . , k}. The output of the algorithm is Ms.

The algorithm maintains a partitioning of C into a set of sub-paths Pk. While these paths are not necessarily
simple, they are at all times edge-disjoint. The algorithm iteratively splits non-simple subpaths into simple
subpaths. At the same time, it needs to make sure that the subpaths can be combined to trees that satisfy
the conditions of Lemma 29. This is accomplished by building the trees of Mk in the transitive closure ĜA

of GA : In this way, we can ensure that any edge of each tree in Mk corresponds to a path in the current
partitioning Pk. More precisely, if a tree in Mk contains an edge (v, w), then the partitioning contains a
subpath (v, . . . , w). This is why we say that a tree T ∈ Mk claims a sub-path p of C if one of the edges
in T corresponds to p. Each time the algorithm splits a sub-path, it also splits the corresponding edge of

25

Algorithm 1: A charging algorithm

input : A minimally guarded circuit C = (v1, . . . , v|C|+1) in GA with v1 = v|C|+1.
Let {ξ1, . . . , ξs} be the set of disjoint vertices on C , w.l.o.g. ξ1 > · · · > ξs.

output: A set M of edge disjoint trees in GA consisting of edges from C

Initialization: Observe that ξ2 can only occur once on C . If vi1 , vi2 ∈ C with i1 6= i2, but

vi1 = vi2 = ξ2, then the subcircuit (vi1 , . . . , vi2) certifies that C is not minimally guarded.

1 let v be the unique node in C with v = ξ2.
2 let T = {{v1, v}} and let M2 = {(T, v1)} T is stored with root v1

3 let P2 = {(v1, . . . , v), (v, . . . , v|C|−1)}. the second part of C is unclaimed

Main loop: Iteration k computes Mk and Pk

4 foreach k = 3, . . . , s do

5 let Mk = Mk−1 and let Pk = Pk−1

We need to process all occurrences of ξk on C , so we store their indices in I
6 let I = {j ∈ {2, . . . , |C| − 1} | vj = ξk}.

Find the path Pj that j lies on. We assume that vPj
occurs before wPj

on C

7 let Pj = (vPj
, . . . , wPj

) be the path in Pk−1 with j as inner node, for all j ∈ I .
First case: Treats all occurences of ξk in unclaimed parts of C by creating new trees.

8 foreach j ∈ I with πk−1(Pj) = ⊥ do

9 let T = {{vPj
, vj}} and let Mk = Mk ∪ {(T, vPj

)} new tree claims left part

10 let Pk = Pk \ {Pj} ∪ {(vPj
, . . . , vj), (vj , . . . , wPj

)} path Pj is split at vj

11 end

Second case: Treats all occurrences of ξk that fall on edges of trees in Mk. This is done by

iterating through all trees and processing all occurrences in the same tree together.

12 foreach (T, r) ∈ Mk−1 do

13 let IT = {j ∈ I | πk−1(Pj) ∈ T }
14 if IT = ∅ then continue If IT is empty, then T remains unchanged

15 select j∗ ∈ IT such that the path from j∗ to r in T contains no j ∈ IT \ {j∗}
T is modified to include j∗. Notice that πk−1(Pj∗) = {vP ∗

j
, wP ∗

j
}.

16 let T = T \ {{vP ∗
j

, wP ∗
j
}} ∪ {{vP ∗

j
, vj∗}, {vj∗ , wP ∗

j
}}

17 let Pk = Pk \ {Pj∗} ∪ {(vP ∗
j

, . . . , vj∗), (vj∗ , . . . , wP ∗
j
)}

18 foreach j ∈ IT \{j∗} do

Any edge containing a j 6= j∗ is split: Half of the edge becomes a new tree, and the other

half is used to keep the tree connected. Notice that πk−1(Pj) = {vPj
, wPj

}.

19 let T = T \ {{vPj
, wPj

}} ∪ {{vj , wPj
}}

20 let T ′ = {{vPj
, vj}} and let Mk = Mk ∪ {(T ′, vPj

)}

21 let Pk = Pk \ {Pj} ∪ {(vPj
, . . . , vj), (vj , . . . , wPj

)}

22 end

23 end

24 end

25 return Ms

26

A1

A4

A5

A7

T1

A1

A4

A5

A7

T2

A1
A4

A5

A7

T3

Figure 11: A different partitioning of the blue circuit in 9 into trees T1, T2, T3 in GA . If none of the three
induced connecting moves is improving, then d(T1) ≥ w(A5) + w(A4), d(T2) ≥ w(A4) + w(A1) and
d(T3) ≥ w(A1). Thus, we get d(Ci) ≥ w(A5) + 2w(A4) + 2w(A1) ≥ n2w(A5) + n3w(A4) + n4w(A1).

a tree in Mk. To represent the correspondence of trees and subpaths, we define the mapping πk : Pk →
∪T ∈Mk

T ×{⊥} that maps a path p = (v, . . . , w) ∈ Pk to an edge e ∈ ∪T ∈Mk
T if and only if e∩p = {v, w}.

If no such edge exists, then πk(P) = ⊥. This mapping is well-defined. The trees in the final set Ms do not
contain transitive edges, i.e., they are subgraphs of GA . They also leave no part of C unclaimed.

We now describe the algorithm in more detail and simultaneously observe its main property:

Invariant 30. For all k = 2, . . . , s, it holds after iteration k that for all i ∈ {2, . . . , k} there are at least ni

trees in Mk that pay for ξi.

For presentation purposes, we assume that we already know that the following invariants are true and prove
them later in Lemma 33. An example run of the algorithm to accompany the explanation can be found
in Figure 12. Notice that the trees in Mk are rooted, i.e., we store each tree as a tuple consisting of the
actual tree plus a root. The trees in connecting moves are unrooted, the roots in Mk are only needed for the
computation.

Invariants 31. For all k = 2, . . . , s, the following holds:

1. The trees in Mk are edge disjoint.

2. The paths in Pk are edge-disjoint and it holds that
⋃

p∈Pk
p = C\{{v|C|, v|C|+1}}.

3. If v is an outer node of some p ∈ Pk, then v ∈ {ξ1, . . . , ξk}. If v is an inner node, then v ∈
{ξk+1, . . . , ξs}.

4. For any e ∈ T , T ∈ Mk, π−1
k (e) consists of one path from Pk.

5. If {vj1, vj2} with j1 < j2 is an edge in T, (T, r) ∈ Mk, then vj1 is closer to r than vj2 .

The initialization consists of setting M2 and P2. Observe that ξ2 is visited exactly once by C: If there
were vi, vj ∈ C with i 6= j, but vi = vj = ξ2, the sub-circuit (vi, . . . , vj) would be such that vi > vj for
all j ∈ {i + 1, . . . , j − 1}, because ξ1 only occurs at v1 and v|C|+1. This would be a contradiction to the
assumption that C is minimally guarded.

The algorithm splits (v1, . . . , v|C|) at the unique occurrence v of ξ2 on C . This is done by setting P2 to
consist of the paths (v1, . . . , v) and (v, . . . , v|C|) and by inserting the tree T = {{v1, v}} with root v1 into

27

7

v1

1

v2

2

v3

1

v4

4

v5

1

v6

2

v7

5

v8

1

v9

3

v10

2

v11

7

v12 Trees in ĜA

M2

P2

7 5

M3

P3

7 4 5

M4

P4

7 4 5
5 3

M5

P5

7 2 4

5 5 3
3 2

4 2

M6

P6

7 1 2

4 5
5 1 3

3 2
4 1 2

2 1

Figure 12: An example for Algorithm 1. On top, we see a circuit v1, . . . , vs drawn in a path form with
the only occurrences of ξ1 = 7 at the endpoints. Below that, we see how Mk and Pk develop through the
iterations k = 2, . . . , 6, after which the algorithm stops. Iteration k = 5 is the first where two occurrences
of ξk fall into the same tree, which changes the structure of the tree, because the edge between v5 and v8 is
split and distributed between two trees: the edge v7 and v8 stays in the tree, and the edge between v5 and v7

forms a new tree. Notice that connectivity is maintained by this operation.

28

M2. Notice that now π2((v1, . . . , v)) = {v1, v} in T and π2((v, . . . , v|C|)) = ⊥. Invariant 30 is true
because there is now one tree paying for ξ2.

For k ≥ 3, we assume that the properties are true for k − 1 by induction. The algorithm starts by setting
Mk = Mk−1 and Pk = Pk−1. Then it considers the set I = {j | vj = ξk} of all occurrences of ξk on
C . For all j ∈ I it follows from Properties 31-2 and 31-3 that there is a unique path Pj = (vPj

, . . . , wPj
)

in Pk−1 with j ∈ Pj . The algorithm defines Pj in Line 7. We know that the paths Pj are different for all
j ∈ I: By Property 31-3, all inner nodes are ξk or a ξℓ with higher index. If at least two occurrences of ξk

would fall on the same Pj , take the two that are closest together: All nodes between them would be equal to
a ξj′ with j′ > k, which contradicts the assumption that C is minimally guarded (because the ξℓ are sorted
decreasingly). Thus, all j ∈ I have a distinct Pj that they lie on. During the whole algorithm, the endpoints
of Pj are always named vPj

and wPj
, where vPj

occurs first on C .

Suppose that πk−1(Pj) 6= ⊥. The algorithm deals with all j that satisfy this in the for loop that starts in
Line 12. For any T with occurences of ξk, it considers IT = {j ∈ I | πk−1(Pj) ∈ T }, the set of all
occurrences of ξk that fall into the same tree T ∈ Mk−1. It select a node j∗ ∈ IT whose unique path to
the root of T does not contain any other j ∈ IT . This node must exist because T is a tree. The algorithm
updates T , and adds a new tree for any j ∈ IT \{j∗}. The idea is that the edge that j∗ falls on is divided into
two edges that stay in T , while all other edges are split into an edge that stays in T and an edge that forms a
new tree. Since all vj with j ∈ IT represent the same connected component, T stays connected.

More precisely, for j∗ the edge {vpj∗ , wpj∗ } is divided in T and is replaced by two edges {vpj∗ , vj∗} and
{vj∗ , wpj∗ }. For all j ∈ IT \ {j∗}, the algorithm replaces {vpj

, wpj
} by {vj , wPj

} in T . By Property 31-5,
we know that vPj

is closer to the root r of T . Thus, removing {vpj
, wpj

} disconnects the subtree at wpj
from

r. However, adding {vj , wPj
} reconnects the tree because vj and vj∗ are the same node and the algorithm

assured that vj∗ ∈ V [T]. Thus, T stays connected. The algorithm also adds the new tree {{vPj
, vj}} to Mk

which it can do because this part of C is now free.

The algorithm also updates Pk by removing Pj , inserting {vPj
, . . . , vj} and {vj , . . . , wPj

} instead, thus
splitting Pj at vj for all j ∈ IT including j∗.

The algorithm also processes all j ∈ I where πk−1(Pj) = ⊥. This is done in the for loop in Line 8. In
this case, the path Pj is split at node j by removing Pj from Pk. Then, the algorithm inserts its two parts
(vPj

, . . . , vj) and (vj, . . . , wPj
) into Pk to Pk. It also adds a new tree {{vPj

, vj}} with root vPj
to Mk.

Notice that all trees that are created satisfy that there is a vertex with a higher number than ξk: if a vertex
is added into a tree, then the other vertices in the tree have higher value, and if a new tree is created, then
it consists of an edge to a vertex which previously was an endpoint of a path, and these have numbers in
{ξ1, . . . , ξk−1}. For every j ∈ I , it either happens that a tree is updated or that a new tree is created. Thus,
the set Mk satisfies Invariant 30 when the iteration is completed.

Lemma 32. Invariant 30 holds.

Verifying the other invariants consists of checking all updates on Mk and Pk.

Lemma 33. Invariants 31 hold.

Proof. It is easy to verify that all properties hold for k = 2 since the algorithm sets M2 = ({v1, v}, v1) and
P2 = {(v1, . . . , v), (v, . . . , v|C|−1)}. Property 31-1 is also true for the new tree created in Line 9 because it
is only executed if Pj is unclaimed. Line 16 subdivides an edge into two. Lines 19 and 20 split an existing
edge and distributes it among T and T ′. Thus, Property 31-1 is preserved. For Property 31-2, consider
Lines 10, 17 and 21 to verify that paths are only split into subpaths and no edges are lost. Property 31-3 stays
true because iteration k processes all occurrences of ξk and always executes one of the Lines 10, 17 and 21,

29

thus splitting the corresponding paths such that ξk becomes an outer node. Lines 9, 10, 16, 17, 19, 20, 21
affect Property 31-4. In all cases, Mk and Pk are adjusted consistently.

Finally, consider Property 31-5. Line 9 creates a new tree by claiming (vPj
, . . . , vj) of the unclaimed

edges on (vPj
, . . . , wPj

). Notice that we assume that vPj
occurs on C before vPj

. Thus, assuming that
Property 31-5 holds for all trees existing before Line 9, we see that it also holds for the new tree. Line 16
modifies a tree T by inserting vj∗ into an edge. Since vj∗ is an inner node of (vPj∗ , . . . , wj∗), Property 31-5
is preserved. Line 19 splits edge {vPj

, wPj
}. Again, recall that vPj

occurs before wPj
on C and thus

inductively is closer to r. Further notice that vj occurs before wPj
and that wPj

gets disconnected from r
when {vPj

, wPj
} is removed. It is then reconnected to r by adding {vj , wPj

}. This means that vj is closer
to r than wPj

. Line 20 creates a new tree that satisfies Property 31-5 because vPj
occurs on C before vj .

Corollary 34. Assume that A is c-approximate connecting move optimal. Let C = (v1, . . . , vl) be a circuit

in GA with edges (e1, . . . , el). If C is minimally guarded, then

l−1∑

i=2

w(Tvi
) ≤ c ·

l∑

i=1

dei
= c · d(C)

Proof. For all T ∈ M and all edges e ∈ T ⊆ Ms, Property 31-4 says that there is a unique path π−1(e) ∈
Ps. Property 31-3 for k = s means that paths can no longer have inner nodes. Thus, π−1(e) is a single
edge, and therefore, e also exist in GA . Thus, all trees in Ms are trees in GA . By Property 31-4, the trees
are edge disjoint. Lemma 32 ensures that they satisfy the precondition of Lemma 29. The corollary then
follows.

As before, we set ξ(v) = j for the unique j ∈ {1, . . . , p} with v ∈ Aj , for all v ∈ V . For any edge set F
in G, we define F� := {e = {u, v} ∈ F | ξ(u) = ξ(v)} and F↔ := {e = {u, v} ∈ F | ξ(u) 6= ξ(v)} as
the subset of edges of F within components of A or between them, respectively. Furthermore, if an edge
set F ′ in G satisfies V [F ′] ⊆ V [Aj] for a j ∈ {1, . . . , p}, then we set ξ(F ′) = j. Notice that in this case,
F ′ = F ′

�.

Lemma 35. Let F̄ be a simple path in G that starts and ends in the same connected component Tj∗ of A

and satisfies that ξ(v) ≤ j∗ for all v ∈ V [F̄]. Assume that F̄ 6= F̄�. Assume that A is edge/set and path/set

swap-optimal with respect to F̄↔ and that A is c-approximate connecting move optimal.

Then, there exists a set R of edges on the vertices V [F̄↔] with (F̄� ∪ R)↔ = (F̄� ∪ R) that satisfies the

properties listed below. Let F ′
1, . . . , F ′

x be the connected components of F̄� ∪ R in (V [F ′], E[F ′]).

1. A is edge/set swap-optimal with respect to R.

2. It holds that d(R) ≤ d(F̄↔) and
∑x

ℓ=2 w(Tξ(F ′
ℓ
)) ≤ c · d(F̄↔).

3. For all F ′
ℓ , there exists an index j such that V [F ′

ℓ] ⊆ V [Aj] (thus, ξ(F ′
ℓ) = j).

4. There is only one F ′
ℓ with ξ(F ′

ℓ) = j∗, assume w.l.o.g. that ξ(F ′
1) = j∗.

Proof. Let F̄ = (s, . . . , v1, w1, . . . , w2, v2, . . . , t) where (s, . . . , v1) and (v2, . . . , t) are the prefix and suffix
of F̄ lying in Tj∗ , i.e., we assume that s, . . . , v1 ∈ Tj∗ , v2, . . . , t ∈ Tj∗ and w1, w2 6∈ Tj∗ . The nodes s and
v1 may coincide as well as v2 and t. Let C̄ be the circuit that F̄ induces in GA .

We do induction on the inclusion-wise hierarchy of guarded circuits. Thus, our base case is that C̄ is
minimally guarded. In this case, we know that all vertices v from (w1, . . . , w2) satisfy ξ(v) < j∗. We
set R = {ē} with ē := {v1, v2} and d(ē) := d(F̄↔) and show that R satisfies Properties 35-1–35-4. For

30

Property 35-1, we need path/set swap optimality. Picking v1 and v2 uniquely defines a set of edges X
which form a shortest path from v1 to v2 in the contracted graph and which every v1-v2-based path move
adds. Let (ē, S) be a edge/set swap that adds ē. We argue that this move cannot be improving because
otherwise, the path/set swap (X, S) was improving. Let loss(X) be the increase that adding X to A incurs
in φ, and let gain(S) be the amount by which deleting S decreases φ. Assume that (ē, S) is improving,
i.e., d(ē) = d(F̄↔) < gain(S). Notice that F̄↔ is a path from v1 to v2 in the contracted graph. Thus,
d(F̄↔) ≥ d(X). Furthermore, notice that loss(X) ≤ d(X). Thus, loss(X) ≤ d(F̄↔), such that our
assumption implies loss(X) < gain(S). That is a contradiction to path/set swap optimality. Property 35-1
holds.

Property 35-2 is true because d(F ′) = d(F̄↔) and by Corollary 34 since d(F̄↔) = d(C̄). Now we look
at the connected components of F̄� ∪ R. They are equal to the connected components of F̄� except that
we add the edge e. Notice that F̄� only contains edges that go within the same component, and that that e
connects two vertices from the same component. Thus, Property 35-4 holds. Furthermore, notice that F̄�

has exactly two connected components consisting of vertices from Tj∗: The vertices on the prefix and suffix
of F̄ . These components are connected by e = {v1, v2}. Thus, Property 35-2 holds.

Now assume that C̄ is not minimally guarded. First assume that C̄ is not guarded. Define v1 and v2 as
before. Since C̄ is not guarded, F̄ has to visit Tj∗ again between v1 and v2. Let v3 and v4 be the first and last
vertex of one arbitrary visit to Tj∗ between v1 and v2. It is possible that v3 = v4, otherwise, notice that v3

and v4 are connected in F̄�. We split F̄ into two paths P1 := (v1, . . . , v3) and P2 := (v4, . . . , v2) and obtain
two sets F 1′ and F 2′ by using the induction hypothesis on the two inclusionwise smaller paths. By induction
hypothesis, v1, v3 and all other occurrences of vertices from Tj∗ in P1 have to be connected in F̄� ∪ F 1′.
Also, v4, v2 and all other occurrences of vertices from Tj∗ in P2 have to be connected in F̄� ∪ F 2′. Thus,
all occurrences of vertices from Tj∗ on F̄ are connected in F̄� ∪ F 1′

∪ F 2′ because v3 is connected to v4

in F̄�. So, Property 35-4 holds. Furthermore, since F̄ is a simple path, no other components of F1
′ and F2

′

can contain the same vertex because only v3 is in both P1 and P2. Thus, Property 35-3 holds for F 1′
∪ F 2′

since it holds for F 1′ and F 2′ individually. If A is edge/set swap-optimal with respect to a set A and also
with respect to a set B, then it is edge/set swap-optimal with respect to A ∪ B, thus Property 35-1 holds
for F 1′

∪ F 2′. Similarly, Property 35-2 holds because it holds for F 1
1

′ and F 2
1

′ individually with respect to
disjoint parts of F̄↔.

Finally, assume that F̄ is guarded, but not minimally guarded. Define v1 and v2 as before. Since F̄ is
guarded, but not minimally guarded, it visits a connected component Tj with j < j∗ twice between v1 and
v2, and between these two visits, it never visits a component Tj′ with j′ > j. Pick a j and two visits of Tj

with this property, and let v3 be the last vertex in the first of these visits of Tj and let v4 be the first vertex
of the second visit of Tj . Again, v3 = v4 is possible and otherwise, v3 and v4 are connected in F̄�. We
apply the induction to the path F̄ ′ which is the subpath (v3, . . . , v4) and obtain a set F ′ by the induction
hypothesis. Additionally, we create F̄ ′′ from F̄ by replacing the subpath (v3, . . . , v4) by the edge (v3, v4).
Since this path is shorter, we can apply the induction hypothesis to F̄ ′′ to obtain a set F ′′. We claim that
F ′ ∪ F ′′ satisfies all properties. Notice that F̄↔ = F̄ ′

↔ ∪ F ′′
↔. Again, Property 35-1 is true because F ′ ∪ F ′′

is the union of two sets that satisfy Property 35-1.

What are the connected components of F̄� ∪ F ′ ∪ F ′′? Let CC be the set of connected components of F̄�,
and define CC′ and CC ′′ to be the connected components of F̄� ∪ F ′ and F̄� ∪ F ′′, respectively. All edges in
F ′ ∪ F ′′ go between different components in CC, and F ′ and F ′′ are defined on vertex sets that are disjoint
with the exception of v3 and v4. Both C′ and C′′ contain exactly one connected component which contains
both v3 and v4 (notice that v3 and v4 are connected in F̄ ′′ and F̄�). In C′, it is the connected component with
the highest width (i.e.,, F ′

1), but in CC′′, the component with the highest width is the component that contains
v1 and v2. Thus, v1, v2 ∈ F ′′

1 and v3, v4 ∈ F ′′
j′′ with j′′ 6= 1. In F̄� ∪ F ′ ∪ F ′′, F ′

1 and Fj′′′ are merged into

31

one connected component because they both contain v3 and v4, meaning that w(F ′
1) = w(Fj′′′) is counted

twice when applying Property 35-2 for F ′ and F ′′ compared to applying Property 35-2 to F ′ ∪F ′′. All other
components in C′ and C′′ are defined on disjoint vertex sets and thus F̄� ∪ F ′ ∪ F ′′ is the disjoint union of
CC′\{F ′

1}, CC ′′\{F ′
j′′′} and {F ′

1 ∪ F ′
j′′}. We see that Property 35-3 and 35-4 carry over to F ′ ∪ F ′′ from

holding for F ′ and F ′′. Name the connected components of F̄� ∪ F ′ ∪ F ′′ as F ′′′
1 , . . . , F ′′′

y . The component
with the highest width among these, F ′′′

1 , is the one that contains v1 and v2, i.e., F ′′′
1 = F ′′

1 . We thus have

y
∑

ℓ=2

w(Tξ(F ′′′
ℓ

)) =
x′
∑

ℓ=2

w(Tξ(F ′
ℓ
)) +

x′′
∑

ℓ=2

w(Tξ(F ′′
ℓ

)) ≤ c · d(F ′
↔) + c · d(F ′′

↔) = c · d(F̄↔).

Since F̄↔ = F̄ ′
↔ ∪ F ′′

↔ and d(F ′) ≤ d(F̄ ′
↔) and d(F ′′) ≤ d(F̄ ′′

↔) by the induction hypothesis, we have
d(F ′ ∪ F ′′) ≤ d(F̄↔) and thus F ′ ∪ F ′′ satisfies Property 35-2.

Figure 13-21 illustrate how F ′ is constructed recursively.

v1

v2

Figure 13: The rounded rectangles visualize the connected components of A , their size indicates their
width. We see a path F̄ that corresponds to a circuit in GA which is guarded, but not minimally guarded.
We pick v1 and v2 as described.

32

v1

v3

v4

v2

Figure 14: We identify suitable v3 and v4 and split the path into two paths: The green path, and the black
path that now contains the dashed edge.

v1

v2 v1

v2

Figure 15: These are the two paths for which we use the induction hypothesis. Both are guarded, but not
minimally guarded.

33

v1

v3v4

v2
v1

v2

Figure 16: We identify v3 and v4 for the two paths in Figure 15 and split the path into the green part and the
black part with the dashed edge.

v1

v2 v1

v2

Figure 17: These are the two black paths. The left one is now minimally guarded, but the right one is split
again.

34

v1

v2 v1v2

v1

v2

v1v2
v1v2

Figure 18: The five base cases that occur.

v1

v2 v1v2

v1

v2

v1v2
v1v2

Figure 19: We get that the blue edges cost at most the same as the black edges in Figure 18, and that
summing the widths for all blue components costs at most the cost of the black edges in Figure 18 as well.

35

v1

v2

Figure 20: The result of the induction for the paths in Figure 15
.

Figure 21: Final set F ′ and connected components of F ′ ∪ F̄�.

36

8.1.3 Wrapping Up

Lemma 36. Let G = (V, E) be a complete graph, let d : E → R≥0 be a metric that assigns a cost de to

every edge e ∈ E and let T ⊆ V × V be a set of terminal pairs. Let A , F ⊆ E be two feasible Steiner

Forest solutions for (G,T). Furthermore, suppose that A is edge/edge, edge/set and path/set swap-optimal

with respect to E and φ, that A is c-approximate connecting move optimal and that A only uses edges

between terminals. Then there exists a feasible solution F ′ with d(F ′) ≤ 2(1 + c) · d(F) that satisfies

F ′ = F ′
� such that A is edge/edge and edge/set swap-optimal with respect to F ′.

Proof. By Observation 26, we know that by accepting a factor of 2 in the cost, we can assume that the
connected components F1, . . . , Fq of F are node disjoint cycles and that V [F] = V [A] equals the set of
all terminals. The connected components of A are T1, . . . , Tp. Recall that we use ξ(v) for the index of
the component Tj that v lies in, and we use F� := {e = {u, v} ∈ F | ξ(u) = ξ(v)} and F↔ := {e =
{u, v} ∈ F | ξ(u) 6= ξ(v)} for any edge set F for the set of edges within components of A or between
them, respectively. Also, if an edge set F ′ in G satisfies V [F ′] ⊆ V [Tj] for a j ∈ {1, . . . , p}, then we use
ξ(F ′) = j. We want to replace all cycles Fi by sets F ′

i which satisfy F ′
i = (F ′

i)� while keeping the solution
feasible and within a constant factor of φ(F). Let F = Fi be one of the cycles.

Let j∗ := maxv∈V [F] ξ(v) be the index of the component with the highest width among the components that
F visits. There have to be at least two vertices on F from Tj∗ (every vertex is a terminal by our assumption,
and since the cycles are disjoint, a lone vertex would not be connected to its mate, but F is a feasible
solution). If the two vertices are adjacent in F , then we can delete the edge that connects them and obtain a
path that satisfies the preconditions of Lemma 35. We get an edge set F ′. Otherwise, let v1 and v2 be two
vertices from Tj∗ that are not connected by an edge in F . Then the cycle is partitioned into two paths, both
with endpoints v1 and v2, that both satisfy the preconditions of Lemma 35. In this case, we get two solutions
F ′

l and F ′
r and set F ′ := F ′

l ∪ F ′
r. Notice that, either way, we get a set of edges F ′ on the vertices V [F]

inducing connected components F ′
1, . . . , F ′

x of F� ∪ F ′ with the following properties:

1. A is edge/set swap-optimal with respect to F ′

2. For all F ′
ℓ , there exists an index j such that V [F ′

ℓ] ⊆ V [Tj] (thus, ξ(F ′
ℓ) = j). When F ′ = F ′

l ∪ F ′
r,

then notice that the connected components of F ′
l and F ′

r are disjoint with the exception of those
containing v1 and v2. Thus, no components with vertices from different Tj will get connected.

3. There is only one F ′
ℓ with ξ(F ′

ℓ) = j∗, assume w.l.o.g. that ξ(F ′
1) = j∗. When F ′ = F ′

l ∪ F ′
r, then

notice that all occurrences of vertices from Tj∗ are connected to v1 and v2 in either F ′
l or F ′

r, thus,
they are all in the same connected component of F ′.

4. It holds that d(F ′) ≤ d(F↔) and
∑x

ℓ=2 w(Tξ(F ′
ℓ
)) ≤ c · d(F↔). When F ′ = F ′

l ∪ F ′
r , notice that

d(F ′) = d(F ′
l) + d(F ′

r) ≤ d(F↔), and that
∑x

ℓ=2 w(Tξ(F ′
ℓ
)), which does not include the components

with v1 and v2, can be split according to the ‘side’ of the cycle that the components belong to.

The solution F ′ that arises from substituting F↔ by F ′ is not necessarily feasible because F� ∪ F ′ can
consist of multiple connected components. We need to transform F ′ such that all terminal pairs in F� ∪ F ′

are connected. Notice that a terminal pair u, ū always satisfies ξ(u) = ξ(ū) because A is feasible, i.e., we
do not need to connect connected components with vertices from different Tj . Furthermore, all vertices in
V [F] from Tj∗ are already connected because of 3. Fix a j < j∗ and consider all connected components F ′

ℓ

with ξ(F ′
ℓ) = j. Notice that j < j∗ implies that the widths of these components are part of

∑x
ℓ=2 w(Tξ(F ′

ℓ
)).

Start with an arbitrary F ′
ℓ . If there is a terminal u ∈ F ′

ℓ whose partner ū is in F ′
ℓ′ , ℓ′ 6= ℓ, then connect u to

ū. Since u, ū ∈ Tj , their distance is at most w(Tj). Since w(Tξ(Fℓ′)) = w(Tj), the contribution of Fℓ′ to the

37

width sum is large enough to cover the connection cost. Now, F ′
ℓ and F ′

ℓ′ are merged into one component,
we keep calling it F ′

ℓ . Repeat the process until all terminals in F ′
ℓ are connected to their partner, while

always spending a connection cost that is bounded by the contribution of the component that gets merged
into F ′

ℓ . When F ′
ℓ is done, pick a component that was not merged and continue in the same fashion. Repeat

until all components are merged or processed. In the end, F ′ is a feasible solution, and the money spent for
the additional edges is bounded by

∑x
ℓ=2 w(Tξ(F ′

ℓ
)) ≤ c · d(F↔). Thus, the cost of the new solution is at

most (1 + c) · d(F↔).

We process all Fi with Fi 6= (Fi)� in this manner to obtain a solution F ′ with F ′ = F ′
�. Notice that A

is edge/edge and edge/set swap-optimal with respect to F ′. This holds for the new edges because they are
from G and A is swap-optimal with respect to G, and it holds for the edges that we get from Lemma 35 by
property 1.

Thus, we have found F ′ with the necessary properties.

We can now apply Corollary 2 to bound the cost of A .

Corollary 37. Let G = (V, E) be a complete graph, let d : E → R≥0 be a metric that assigns a cost de

to every edge e ∈ E and let T ⊆ V × V be a terminal set. Let A , F ⊆ E be two feasible Steiner Forest

solutions for (G,T). Furthermore, suppose that A is edge/edge, edge/set and path/set swap-optimal with

respect to E and φ, that A is c-approximate connecting move optimal and that A only uses edges between

terminals. Then d(A ′) ≤ 23(1 + c) · d(F).

Proof. Lemma 36 ensures that there is a solution F ′ with d(F ′) ≤ 2(1+c) ·d(F) that satisfies F ′
� = F ′.

Every connected component Aj of A can now be treated separately by using Corollary 2 on Aj and the part
of F ′ that falls into Aj . By combining the conclusions for all connected components, we get that

d(A ′) ≤ 11.5φ(F ′) ≤ 23(1 + c) · d(F)

for any feasible solution F .

Theorem 1 follows directly. Since the 2-approximation for k-MST [Gar05] can be adapted to the weighted
case [Gar16], c = 2 is possible and we can achieve an approximation guarantee of 69.

References

[AFS13] Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy, Local-search Based Approximation Algo-

rithms for Mobile Facility Location Problems, Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’13, SIAM, 2013, pp. 1607–1621.

[AGK+04] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit,
Local Search Heuristics for k-Median and Facility Location Problems, SIAM Journal on Computing 33

(2004), no. 3, 544–562.

[AK00] Sanjeev Arora and George Karakostas, A 2 + ǫ Approximation Algorithm for the k-MST Problem, Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (David Shmoys, ed.),
SODA ’00, Society for Industrial and Applied Mathematics, 2000, pp. 754–759.

[AKR95] Ajit Agrawal, Philip Klein, and R. Ravi, When Trees Collide: An Approximation Algorithm for the

Generalized Steiner problem on Networks, SIAM Journal on Computing 24 (1995), no. 3, 440–456.

[Ali94] Paola Alimonti, New Local Search Approximation Techniques for Maximum Generalized Satisfiabil-

ity Problems, Proceedings of the Second Italian Conference on Algorithms and Complexity (Maurizio
Bonuccelli, Pierluigi Crescenzi, and Rossella Petreschi, eds.), CIAC ’94, Springer-Verlag, 1994, pp. 40–
53.

38

[AR98] Sunil Arya and H. Ramesh, A 2.5-factor Approximation Algorithm for the k-MST Problem, Information
Processing Letters 65 (1998), no. 3, 117–118.

[Big98] Norman Biggs, Constructions for cubic graphs with large girth, The Electronic Journal of Combinatorics
5 (1998), no. 1, A1:1–A1:25.

[BRV96] Avrim Blum, R. Ravi, and Santosh Vempala, A Constant-factor Approximation Algorithm for the k-MST

Problem, Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing (Gary L.
Miller, ed.), STOC ’96, ACM, 1996, pp. 442–448.

[CAKM16] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu, Local search yields approximation schemes

for k-means and k-median in euclidean and minor-free metrics, Proceedings of the 57th Annual Sympo-
sium on Foundations of Computer Science, 2016, to appear.

[CG15] Sergio Cabello and David Gajser, Simple PTAS’s for families of graphs excluding a minor, Discrete
Applied Mathematics 189 (2015), 41–48.

[CIM09] Chandra Chekuri, Sungjin Im, and Benjamin Moseley, Longest wait first for broadcast scheduling [ex-

tended abstract], Approximation and Online Algorithms, Springer, 2009, pp. 62–74.

[CM15] Vincent Cohen-Addad and Claire Mathieu, Effectiveness of local search for geometric optimization, 31st
International Symposium on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The
Netherlands, 2015, pp. 329–343.

[CRV10] Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant, Designing network protocols for good equilibria,
SIAM J. Comput. 39 (2010), no. 5, 1799–1832. MR 2592034 (2011d:68012)

[CRW04] Fabián A. Chudak, Tim Roughgarden, and David P. Williamson, Approximate k-MSTs and k-Steiner

Trees via the Primal-dual Method and Lagrangean Relaxation, Mathematical Programming 100 (2004),
no. 2, 411–421.

[CS09] Chandra Chekuri and F. Bruce Shepherd, Approximate Integer Decompositions for Undirected Network

Design Problems, SIAM Journal on Discrete Mathematics 23 (2009), no. 1, 163–177.

[FHJM94] Matteo Fischetti, Horst W. Hamacher, Kurt Jørnsten, and Francesco Maffioli, Weighted k-Cardinality

Trees: Complexity and Polyhedral Structure, Networks 24 (1994), no. 1, 11–21.

[FR94] Martin Fürer and Balaji Raghavachari, Approximating the minimum-degree steiner tree to within one of

optimal, J. Algorithms 17 (1994), no. 3, 409–423.

[FRS16] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour, Local search yields a PTAS for

k-means in doubling metrics, Proceedings of the 57th Annual Symposium on Foundations of Computer
Science, vol. abs/1603.08976, 2016, to appear.

[Gar96] Naveen Garg, A 3-approximation for the Minimum Tree Spanning K Vertices, Proceedings of the Thirty-
seventh Annual Symposium on Foundations of Computer Science, FOCS ’96, IEEE Computer Society,
1996, pp. 302–309.

[Gar05] , Saving an Epsilon: A 2-approximation for the k-MST Problem in Graphs, Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing (Ronald Fagin and Hal Gabow, eds.),
STOC ’05, ACM, 2005, pp. 396–402.

[Gar16] Naveen Garg, 2016, Personal Communication.

[GGK13] Albert Gu, Anupam Gupta, and Amit Kumar, The Power of Deferral: Maintaining a Constant-

Competitive Steiner Tree Online, Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing (Dan Bonesh, Joan Feigenbaum, and Tim Roughgarden, eds.), STOC ’13, ACM, 2013,
pp. 525–534.

[GK14] Anupam Gupta and Amit Kumar, Online steiner tree with deletions, SODA, Jan 2014, pp. 455–467.

[GK15] Anupam Gupta and Amit Kumar, Greedy Algorithms for Steiner Forest, Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing (Ronitt Rubinfeld and Rocco Servedio, eds.), STOC
’15, ACM, 2015, pp. 871–878.

39

[GW95] Michel X. Goemans and David P. Williamson, A General Approximation Technique for Constrained

Forest Problems, SIAM Journal on Computing 24 (1995), no. 2, 296–317.

[Hel00] Keld Helsgaun, An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic, Euro-
pean Journal of Operational Research 126 (2000), no. 1, 106–130.

[IW91] Makoto Imase and Bernard M. Waxman, Dynamic Steiner tree problem, SIAM J. Discrete Math. 4

(1991), no. 3, 369–384. MR 92f:68066

[Jai01] Kamal Jain, A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem, Combi-
natorica 21 (2001), no. 1, 39–60.

[JMP00] David S. Johnson, Maria Minkoff, and Steven Phillips, The Prize Collecting Steiner Tree Problem: The-

ory and Practice, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’00, Society for Industrial and Applied Mathematics, 2000, pp. 760–769.

[JV01] Kamal Jain and Vijay V. Vazirani, Approximation Algorithms for Metric Facility Location and k-Median

Problems Using the Primal-dual Schema and Lagrangian Relaxation, Journal of the ACM 48 (2001),
no. 2, 274–296.

[KLS05] Jochen Könemann, Stefano Leonardi, and Guido Schäfer, A Group-Strategyproof Mechanism for Steiner

Forests, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’05, Society for Industrial and Applied Mathematics, 2005, pp. 612–619.

[KLSvZ08] Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan H. M. van Zwam, A Group-

Strategyproof Cost Sharing Mechanism for the Steiner Forest Game, SIAM Journal on Computing 37

(2008), no. 5, 1319–1341.

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and An-
gela Y. Wu, A Local Search Approximation Algorithm for k-means Clustering, Computational Geometry
28 (2004), no. 2–3, 89–112, Special Issue on the 18th Annual Symposium on Computational Geometry
– SoCG2002.

[KMSV98] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V. Vazirani, On Syntactic versus Compu-

tational Views of Approximability, SIAM Journal on Computing 28 (1998), no. 1, 164–191.

[KPR00] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman, Analysis of a local search heuristic

for facility location problems, J. Algorithms 37 (2000), no. 1, 146–188.

[LK73] Shen Lin and Brian W. Kernighan, An Effective Heuristic Algorithm for the Traveling-Salesman Problem,
Operations Research 21 (1973), no. 2, 498–516.

[LOP+15] Jakub Łącki, Jakub Oćwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych, The Power of Dynamic

Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing (New York, NY, USA), STOC ’15, ACM, 2015,
pp. 11–20.

[LR96] Hsueh-I Lu and R. Ravi, The Power of Local Optimization: Approximation Algorithms for Maximum-

leaf Spanning Tree, In Proceedings, Thirtieth Annual Allerton Conference on Communication, Control
and Computing, 1996, pp. 533–542.

[MSVW12] Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese, The power of recourse for online

MST and TSP, ICALP (1), 2012, pp. 689–700.

[PS15] Lukáš Poláček and Ola Svensson, Quasi-Polynomial Local Search for Restricted Max-Min Fair Alloca-

tion, ACM Transactions on Algorithms 12 (2015), no. 2, 13:1–13:13.

[PTW01] Martin Pál, Éva Tardos, and Tom Wexler, Facility location with nonuniform hard capacities, 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, 2001, pp. 329–338.

40

[SO98] Roberto Solis-Oba, 2-Approximation Algorithm for Finding a Spanning Tree with Maximum Number

of Leaves, Proceedings of the Sixth Annual European Symposium on Algorithms (Gianfranco Bilardi,
Giuseppe F. Italiano, Andrea Pietracaprina, and Geppino Pucci, eds.), ESA ’98, Springer Berlin Heidel-
berg, 1998, pp. 441–452.

[WS11] David P Williamson and David B Shmoys, The design of approximation algorithms, Cambridge univer-
sity press, 2011.

41

A Notes on simpler local search algorithms

A.1 Adding an edge and removing a constant number of edges

Let ℓ and k < ℓ be integers and consider Figure 22. Notice that adding a single edge and removing k edges
does not improve the solution. However, the current solution costs more than ℓ2/k and the optimal solution
costs less than 2ℓ, which is a factor of ℓ/(2k) better.

s1 s2 t2 s3 t3 . . . sℓ tℓ t1

ℓ
k 1

ℓ
k 1 1

ℓ
k

ℓ

Figure 22: A bad example for edge/set swaps that remove a constant number of edges.

A.2 Regular graphs with high girth and low degree

Assume that G is a degree-3 graph with girth g = c log n like the graph used in Chen et al. [CRV10]. Such
graphs can be constructed, see [Big98]. Select a spanning tree F in G which will be the optimal solution.
Let E′ be the non-tree edges, notice that |E′| ≥ n/2, and let M be a maximum matching in E′. Because of
the degrees, we know that |M | ≥ n/10. The endpoints of the edges in M form the terminal pairs T. Set the
length of all edges in F to 1 and the length of the remaining edges to g/4. The solution F is feasible and
costs n − 1. The solution M costs Ω(log n).

Assume we want to remove an edge e = {v, w} ∈ M and our swap even allows us to add a path to reconnect
v and w (in the graph where M\{e} is contracted). Let P be such a path. Since M is a matching, at most
every alternating edge on P is in M . Thus, we have to add |P |/2 − 1 ≥ g/2 − 1 edges of length one at a
total cost that is larger than the cost g/4 of e. Thus, no d-improving swap of this type exists (note that, in
particular, path/set swaps are not d-improving for M). As a consequence, any oblivious local search with
constant locality gap needs to sport a move that removes edges from multiple components of the current
solution. In order to restrict to local moves that only remove edges from a single component, we therefore
introduced the potential φ.

B Making the Algorithm Polynomial

So far, we have shown that any locally optimal solution is also within a constant factor of the global optimum.
In order to ensure that the local search can find such a local optimum in polynomial time, two issues have to
be addressed.

First, we need to show that each improving move can be carried out in polynomial time (or it can be decided
in polynomial time that no such move exists). While it is easy to see that improving edge/edge, edge/set,
and path/set swaps can be found in polynomial time, finding an improving connecting move is NP-hard in
general. However, as we saw in Section 8.1, it is sufficient to restrict the neighborhood of the local search
to c-approximate connecting moves. In Section B.1, we show that the task of finding an approximate con-
necting move reduces to approximating the weighted k-MST problem. In Section B.2 we discuss constant
factor approximation algorithms for this problem. In particular, we get the following theorem:

Theorem 38. Let ε > 0. There exists a polynomial time algorithm, called Improving-Connecting-Move,

such that given a Steiner forest A and a metric distance d : E → R≥0 on the edges then either: (i)

the algorithm finds an improving connecting move with respect to φ, or (ii) it guarantees that there is no

42

c(1 + ε)-approximate connecting move, that is, for every tree T of GA it holds that

∑

e∈A)

d(e) ≥ c(1 + ε) ·

∑

i∈VA

w(Ai) − max
i∈VA

w(Ai)

 ,

where {A1, . . . , Ap} is the set of connected components of A .

The second thing we need to show for guaranteeing polynomiality of the local search is that the total number
of improving moves is bounded by a polynomial in the input size. This can easily be achieved done via a
standard rounding technique incurring only a loss of a factor of 1 + ε over the original guarantee for local
optima, for an arbitrarily small ε > 0; see Section B.3 for details.

We finally get the following theorem:

Theorem 39. For every ε > 0, there is a local search algorithm that computes in polynomial time a solution

A to Steiner Forest such that d(A) ≤ (1 + ε)69 · OPT.

B.1 How to ensure approximate connecting move optimality

Assume that we are given an algorithm Tree-Approx that computes a c-approximation for the following
minimization problem. We call the problem weighted (rooted) k-MST problem, and approximating it is
further discussed in Section B.2.

Given G = (V, E) with a root r, a metric d : V × V → R+, a function γ : V → R+ with
γ(r) = 0, and a lower bound Γ, find a tree T in G with r ∈ V [T] and

∑

v∈V [T] γ(v) ≥ Γ that
minimizes

∑

e∈T d(e).

We see how to use Tree-Approx to ensure ((1 + ε) · c)-approximate connecting move optimality. We ap-
ply Tree-Approx to Gall

A
. Recall that the vertices in Gall

A
are {1, . . . , p}, corresponding to the components

A1, . . . , Ap of our solution. We try |V (Gall
A

)| possibilities for the component with the largest width in the
connecting move. After choosing the largest component to be the one with index i, we delete all vertices
from Gall

A
with indices larger than i. Then we set γ(i) := 0 and γ(j) := w(Aj) for j < i. We can collect

prices between wmin := min{w(Ai) | i ∈ {1, . . . , p}, w(Ai) > 0}, the smallest strictly positive width of
any component, and

∑i−1
j=1 w(Aj) < p · w(Ap). We call Tree-Approx for Γ = (1 + ε/2)ℓwmin for all ℓ ≥ 1

until (1 + ε/2)ℓ ≥ pw(Ap). The largest ℓ that we have to test is at most log1+ε/2 p
w(Ap)
wmin

. Thus, our total

number of calls of Tree-Approx is bounded by p · log1+ε/2 pw(Ap)
wmin

≤ n · log1+ε/2 n∆, where ∆ is the largest
distance between a terminal and its partner divided by the smallest such distance that is non-zero.

Assume that Tree-Approx returns a solution T with
∑

e∈E[T] d(e) >
∑

v∈T γ(v) for all calls, which means
that it does not find an improving connecting move. Furthermore, assume that there exists a ((1 + ε) · c)-
approximate connecting move T ∗ that we should have found, i.e., which satisfies that

∑

e∈E[T ∗] d(e) ≤
1

(1+ε)c

∑

v∈T ∗ γ(v). Set Γ∗ :=
∑

v∈T ∗ γ(v). Let ℓ be the index that satisfies (1 + ε/2)ℓwmin ≤ Γ∗ <

(1 + ε/2)ℓ+1wmin and consider the run with the correct choice of the largest width and the lower bound
Γ′ := (1 + ε/2)ℓwmin.

Notice that T ∗ is a feasible solution for this run: w(T ∗) = Γ∗ ≥ Γ′ satisfies the lower bound. Thus, the
optimal solution to the input has a cost of at most

∑

e∈E[T ∗] d(e). Tree-Approx computes a c-approximation,

43

i.e., a solution T̂ with
∑

v∈V [T̂] γ(v) ≥ Γ′ and

∑

e∈T̂

d(e) ≤ c
∑

e∈E[T ∗]

d(e) ≤
c

(1 + ε)c

∑

v∈V [T ∗]

γ(v)

≤ (1 + ε/2)
c

(1 + ε)c
Γ′ < Γ′ ≤

∑

v∈V [T̂]

γ(v),

which means that Tree-Approx computes an improving connecting move.

B.2 Weighted k-MST

This section is about ways to provide the algorithm Tree-Approx. The problem we want to solve is a weighted
version of the rooted k-MST problem. Given G = (V, E) with a root r, a metric d : V ×V → R+ and a lower
bound k ∈ N, the rooted k-MST problem is to compute a tree T in G with r ∈ V [T] and |V [T]| ≥ k that
minimizes

∑

e∈E[T] d(e). The unrooted k-MST problem is defined verbatim except that no distinguished
root has to be part of the tree.

Work on k-MST. Fischetti et al. [FHJM94] show that the unrooted k-MST problem is NP-hard. Any
algorithm for the rooted k-MST problem transfers to an algorithm for the unrooted case with the same
approximation guarantee by testing all possible nodes and returning the best solution that was found. This
in particular holds for optimal algorithms, so the rooted k-MST problem is also NP-hard.

As for example observed by Garg [Gar05], we can also use algorithms for the unrooted k-MST problem to
compute solutions for the rooted k-MST problem with the same approximation guarantee. To do so, create
n vertices with zero distance to the designated root vertex and search for a tree with n + k vertices. Any
such tree has to include at least one copy of the root, and at least k − 1 other vertices. Thus, any solution for
the unrooted k-MST problem is a feasible solution for the rooted k-MST problem, and the cost is the same.
Thus, the rooted and unrooted version of the k-MST problem are equivalent.

Blum, Ravi and Vempala [BRV96] develop the first constant-factor approximation for the k-MST problem,
the factor is 17. Subsequently, Garg [Gar96] gave a 3-approximation, Arya and Ramesh [AR98] devel-
oped a 2.5-approximation, Arora and Karakostas [AK00] proposed a (2 + ε)-approximation, and, finally,
Garg [Gar05] published a 2-approximation algorithm for the k-MST problem. Chudak, Roughgarden and
Williamson [CRW04] show that an easier 5-approximation also proposed by Garg [Gar96] bears resem-
blances to the primal dual algorithm by Jain and Vazirani [JV01] for the k-median problem, in particular to
the utilization of Lagrangean relaxation.

Connection to weighted k-MST. Johnson, Minkoff and Phillips [JMP00] observe the following reduction
from the weighted k-MST problem to the unweighted k-MST problem, assuming all γ(v) are integers. To
create the unweighted instance G′ = (V ′, E′), start with V ′ = V . Then, for any vertex v, add 2γ(v)n − 1
vertices at distance zero of v (thus, there are 2γ(n)n vertices ‘at’ v), and set k to 2nΓ. Any solution T
for the weighted k-MST problem can be interpreted as a solution T ′ for the modified unweighted instance
with

∑

v∈V [T] 2nγ(v) = 2nΓ vertices. Given a solution for the unweighted input, we can first change the
solution thus that for any v ∈ V , either v′ ∈ V ′ is not picked or v′ is picked and its 2γ(v)n − 1 copies are
picked as well. This is possible since picking more vertices at the same location incurs no additional cost.
After this step, the solution can be transformed into a weighted solution with enough weight by picking the
corresponding vertices in V .

This reduction constructs an input for the unweighted k-MST problem that is of pseudo-polynomial size.
Johnson et al. [JMP00] note that algorithms for the unweighted k-MST problem can typically be adapted to
handle the clouds of vertices at the same location implicitly without incurring a super-polynomial running

44

time. They specifically state that this is true for the 3-approximation algorithm by Garg [Gar96] for the
rooted k-MST problem. The more recent 2-approximation algorithm by Garg [Gar05] can also be adapted
for the weighted case such that the running time remains independent of the weights [Gar16]. This yields a
polynomial 2-approximation algorithm for weighted k-MST.

B.3 Convergence

It is easy to see that a straightforward execution of the local search algorithm discussed in this paper runs
in pseudo-polynomial time, as each improving move decreases the potential at least by the length of the
shortest edge. We apply a standard rounding technique to make the algorithm polynomial.

Algorithm X

1. Set i := 0 and let A0 = T.

2. β :=
ε·max{v,v̄}∈T d(v,v̄)

|E| , dβ(e) :=
⌈

d(e)
β

⌉

β.

3. While Ai admits an improving path/set swap w.r.t to φβ , or Improving-Connecting-Move finds an
improving connecting move w.r.t. φβ , set Ai+1 to be the resulting solution after applying the move,
and i := i + 1.

4. Return the solution A ′ obtained by dropping all inessential edges of Ai.

Lemma 40. Assuming that the locality gap for swap-optimal and c-approximate connecting move optimal

solutions is C , Algorithm X computes in polynomial time a (1 + ε)C-approximation to Steiner Forest.

Proof. We first observe that the algorithms runs in polynomial time. To see this, first note that dβ(e) ≥ β
for all e ∈ E. Therefore, every improving path/set swap and every successful run of Improving-Connecting-

Move decreases the potential by at least β, i.e., φβ(Ai+1) ≤ φβ(Ai)−β. As φβ(A0) = 2
∑

{v,v̄}∈T dβ(v, v̄) ≤
2nt|E|

ε β, we conclude that the algorithm terminates after at most 2nt|E|
ε iterations, each of which can be ex-

ecuted in polynomial time.

Now consider the output A ′ of Algorithm X. As it is path/set swap optimal and c-approximately connecting
move optimal w.r.t. dβ , our assumption on the locality gap implies that dβ(A ′) ≤ Cdβ(Fβ), where Fβ is
the optimal solution of the Steiner Forest instance defined by the metric dβ . Furthermore dβ(Fβ) ≤ dβ(F),
where F is an optimal solution to the original Steiner Forest instance defined by the metric d. We hence
observe that

d(A ′) ≤ dβ(A ′) ≤ Cdβ(Fβ) ≤ Cdβ(F) = C ·
∑

e∈F

⌈
d(e)

β

⌉

β

≤ C ·
∑

e∈F

(
d(e)

β
+ 1

)

β ≤ C · (d(F) + |F |β) ≤ (1 + ε)C · d(F),

where the last inequality follows from |F | ≤ |E| and d(F) ≥ max{v,v̄}∈T d(v, v̄).

Note that Corollary 37 asserts that we can choose C = 23(1 + c), and [Gar05, Gar16] yields that c = 2 is a
feasible choice. Thus Lemma 40 yields a polynomial-time (1+ε) ·69-approximation local search algorithm,
proving Theorem 1.

45

	1 Introduction
	1.1 Our Techniques
	1.2 Related Work

	2 Preliminaries
	3 The Local Search Algorithm
	4 In Which the Local Optimum is a Single Tree
	4.1 An approximation guarantee for trees and d
	4.2 An approximation guarantee for trees and width objective

	5 In Which the Local Optimum may be a Forest
	6 Proofs: Bounds on d when the Local Optimum is a Tree
	7 Proofs: Bounds on phi when the Local Optimum is a Tree
	7.1 Bounding the Middle Term
	7.2 Bounding the First Term
	7.3 Bounding the Third Term: Sum of Widths
	7.3.1 Wrapping Things Up

	8 Proofs: Bounds when the Local Optimum is a Forest
	8.1 Details: Getting a Good Tree Packing
	8.1.1 Notation
	8.1.2 The Partitioning Algorithm
	8.1.3 Wrapping Up

	A Notes on simpler local search algorithms
	A.1 Adding an edge and removing a constant number of edges
	A.2 Regular graphs with high girth and low degree

	B Making the Algorithm Polynomial
	B.1 How to ensure approximate connecting move optimality
	B.2 Weighted k-MST
	B.3 Convergence

