570 Biowissenschaften; Biologie
Refine
Document Type
Year of publication
Institute
Has Fulltext
- yes (105)
Is part of the Bibliography
- yes (105)
Keywords
- C60 fullerene (5)
- DNA (4)
- next-generation sequencing (4)
- Mars (3)
- apoptosis (3)
- genotyping (3)
- leukemic cells (3)
- Berberine (2)
- Doxorubicin (2)
- G-quadruplex (2)
Background
Cutaneous leishmaniasis (CL) is a vector-borne parasitic diseases of public health importance that is prevalent in the West Bank but not in the Gaza Strip. The disease caused by parasitic protozoans from the genus Leishmania and it is transmitted by infected phlebotomine sand flies. The aim of our study is to investigate the eco-epidemiological parameters and spatiotemporal projections of CL in Palestine over a 30-years period from 1990 through 2020 and to explore future projections until 2060.
Methodology/Principal findings
This long-term descriptive epidemiological study includes investigation of demographic characteristics of reported patients by the Palestinian Ministry of Health (PMoH). Moreover, we explored spatiotemporal distribution of CL including future projection based on climate change scenarios. The number of CL patients reported during this period was 5855 cases, and the average annual incidence rate (AAIR) was 18.5 cases/105 population. The male to female ratio was 1.25:1. Patients-age ranged from 2 months to 89 years (mean = 22.5, std 18.67, and the median was 18 years). More than 65% of the cases came from three governates in the West Bank; Jenin 29% (1617 cases), Jericho 25% (1403), and Tubas 12% (658) with no cases reported in the Gaza Strip. Seasonal occurrence of CL starts to increase in December and peaked during March and April of the following year. Current distribution of CL indicate that Jericho, Tubas, Jenin and Nablus have the most suitable climatic settings for the sandfly vectors. Future projections until 2060 suggest an increasing incidence from northwest of Jenin down to the southwest of Ramallah, disappearance of the foci in Jericho and Tubas throughout the Jordan Vally, and possible emergence of new foci in Gaza Strip.
Conclusions/Significance
The future projection of CL in Palestine until 2060 show a tendency of increasing incidence in the north western parts of the West Bank, disappearance from Jericho and Tubas throughout the Jordan Vally, and emergence of new CL endemic foci in the Gaza Strip. These results should be considered to implement effective control and surveillance systems to counteract spatial expansion of CL vectors.
The isoquinoline quaternary alkaloid Berberine possesses a variety of pharmacological properties that suggests its promising application for an anticancer delivery system design utilizing its ability to intercalate DNA. In the current work, we have investigated the effects of Berberine on the human T cell leukemia cell line in vitro. Fluorescent microscopy of leukemic cells revealed Berberine nuclear localization. The results showed that Berberine inhibited leukemic cell growth in a time- and dose-dependent manner, that was associated with reactive oxygen species production intensification and caspase 3/7 activity increase with followed apoptosis induction. Berberine was used as a toxic and phototoxic agent for triple system synthesis along with DNA as a carrier and nanosilver as a plasmonic accelerator of Berberine electronic transitions and high energy emission absorbent centers. The proposed method allows to obtain the complex of DNA with Berberine molecules and silver nanoparticles. The optical properties of free components as well as their various combinations, including the final triple system DNA-Nanosilver-Berberine, were investigated. Obtained results support the possibility to use the triple system DNA-Nanosilver-Berberine as an alternative therapeutic agent for cancer treatment.
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain “live” (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines’ implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Microscopic examination of human blood samples is an excellent opportunity to assess general health status and diagnose diseases. Conventional blood tests are performed in medical laboratories by specialized professionals and are time and labor intensive. The development of a point-of-care system based on a mobile microscope and powerful algorithms would be beneficial for providing care directly at the patient's bedside. For this purpose human blood samples were visualized using a low-cost mobile microscope, an ocular camera and a smartphone. Training and optimisation of different deep learning methods for instance segmentation are used to detect and count the different blood cells. The accuracy of the results is assessed using quantitative and qualitative evaluation standards.
In this work, the fabrication and characterization of a simple, inexpensive, and effective microfluidic paper analytic device (µPAD) for monitoring DNA samples is reported. The glass microfiber-based chip has been fabricated by a new wax-based transfer-printing technique and an electrode printing process. It is capable of moving DNA effectively in a time-dependent fashion. The nucleic acid sample is not damaged by this process and is accumulated in front of the anode, but not directly on the electrode. Thus, further DNA processing is feasible. The system allows the DNA to be purified by separating it from other components in sample mixtures such as proteins. Furthermore, it is demonstrated that DNA can be moved through several layers of the glass fiber material. This proof of concept will provide the basis for the development of rapid test systems, e.g., for the detection of pathogens in water samples.
Besides invasive mosquito species also several native species are proven or suspected vectors of arboviruses as West Nile or Usutu virus in Western Europe. Habitat models of these native vectors can be a helpful tool for assessing the risk of autochthonous occurrence, outbreaks and spread of diseases caused by such arboviruses. Modelling native mosquitoes is complicated because of the perfect adaptation to the climatic and landscape conditions and their high abundance in contrast to invasive species. Here we present a new approach for such a habitat model for native mosquito species in Germany, which are considered as vectors of West Nile virus (WNV). Epizootic emergence of WNV was registered in Germany since 2018. The models are based on surveillance data of mosquitoes from the German citizen science project “Mückenatlas” complemented by data from systematic trap monitoring in Germany, and on data freely available from the Deutscher Wetterdienst (DWD) and OpenStreetMap (OSM). While climatic factors still play an important role, we could show that habitat suitability is predictable only by the combination of the climate model with a regional model. Both models were based on a machine-learning approach using XGBoost. Evaluation of the accuracy of the models was done by statistical analysis, determining among others feature importances using the SHAP-Library. Final output of the combined climatic and regional models are maps showing the superposed habitat suitability which are generated through a number of steps described in detail. These maps also include the registered cases of WNV infections in the selected region of Germany.
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
AbstractThe introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.