Regensburg Center of Biomedical Engineering - RCBE
Refine
Year of publication
Document Type
- conference proceeding (article) (92)
- Article (79)
- conference talk (36)
- conference proceeding (presentation, abstract) (31)
- Part of a Book (5)
- conference proceeding (volume) (2)
- Doctoral Thesis (2)
- Moving Images (2)
- Other (2)
- Preprint (1)
Is part of the Bibliography
- no (253)
Keywords
- Simulation (11)
- Biomechanik (8)
- Deep Learning (8)
- Biomechanics (7)
- Hüftgelenkprothese (7)
- Lernprogramm (7)
- Bildverarbeitung (6)
- Biomechanische Analyse (6)
- Handchirurgie (6)
- Stent (6)
Institute
- Regensburg Center of Biomedical Engineering - RCBE (253)
- Fakultät Maschinenbau (201)
- Labor Biomechanik (LBM) (125)
- Fakultät Informatik und Mathematik (48)
- Regensburg Medical Image Computing (ReMIC) (41)
- Labor Innovation & Regulatory Affairs (IRA) (33)
- Regensburg Center of Health Sciences and Technology - RCHST (31)
- Labor Biofluidmechanik (24)
- Labor Medizinprodukte (16)
- Labor eHealth (eH) (4)
Begutachtungsstatus
- peer-reviewed (86)
- begutachtet (7)
In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes
(2023)
Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage–hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.
Seit mehr als 25 Jahren ist der Workshop "Bildverarbeitung für die Medizin" als erfolgreiche Veranstaltung etabliert. Ziel ist auch 2023 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespräche zwischen Wissenschaftlern, Industrie und Anwendern. Die Beiträge dieses Bandes - viele davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere die Bildgebung und -akquisition, Segmentierung und Analyse, Visualisierung und Animation, computerunterstützte Diagnose sowie bildgestützte Therapieplanung und Therapie. Hierbei kommen Methoden des maschinelles Lernens, der biomechanischen Modellierung sowie der Validierung und Qualitätssicherung zum Einsatz.
We investigate contrastive learning in a multi-task learning setting classifying and segmenting early Barrett’s cancer. How can contrastive learning be applied in a domain with few classes and low inter-class and inter-sample variance, potentially enabling image retrieval or image attribution? We introduce a data sampling strategy that mines per-lesion data for positive samples and keeps a queue of the recent projections as negative samples. We propose a masking strategy for the NT-Xent loss that keeps the negative set pure and removes samples from the same lesion. We show cohesion and uniqueness improvements of the proposed method in feature space. The introduction of the auxiliary objective does not affect the performance but adds the ability to indicate similarity between lesions. Therefore, the approach could enable downstream auto-documentation tasks on homogeneous medical image data.
Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95% water vapor and 5% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations.
High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle
(2023)
Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions.
This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person’s head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras‘ double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.
Introduction
Shear induced multimerisation of von-Willebrand-factor (vWF) is supposed to play an important role in coagulation inside extracorporeal membrane oxygenators. However, there is no proof that links observed vWF structures to computed or measured flow conditions.
Methods
The structures of multimeric vWF fibers, observed in clinically used membrane oxygenators is examined using immunofluorescence microscopy (IFM) using Carstairs’ staining method (positive ethics committee vote). The flow around the membrane fibres inside the oxygenator is investigated in terms of shear rate, wall shear velocity and streamlines by using CFD (RANS, Carreau-Yasuda viscosity, geometry remodelled after high-resolution µCT-scans). By interpreting the histological and numerical results in this common context, indications for shear induced coagulation mechanisms can be identified.
Results
The fibre structures of multimeric vWF build regular but not exactly symmetric formations around the contact face (CF) between the crosswise stacked oxygenator fibres (OF), see fig.1B, vWF marked red. Annular around the CF arranged, cells are likely to be found, see fig.1B, nuclei marked blue.
The computed streamlines around the OF show attached flow around the circular fibres. However, the irregular arrangement of real OF produce considerable cross flow between the interconnected neighbouring channels, in contrast to previous 2D-simulations. Thus, the CF are washed around closely by blood, also from neighbouring channels. The wall shear velocity streamlines form regular, slightly asymmetric shapes around the contact faces. The occurring maximum shear rates are in the range of 1,000 1/s.
Discussion
The shapes of vWF structures found in clinically used oxygenators match the computational results in terms of wall shear velocity and streamlines well. The accumulation of cells close to the CF can also be explained by fluid mechanics, as there are small shear gradients and slow velocities. However, occurring shear rates between OFs are too low to trigger multimerisation of vWF. That raises the question where in the circuit the actual activation of vWF is started and how, at least partly chained, vWF multimeres are attracted towards the OF surface. A next step will be the investigation of the actual shear rate triggered (or mediated) multimerisation of vWF. Towards this end, microfluidic experiments with shear triggered coagulation will be performed. Also of big interest is the computation of the flow situation in the oxygenator in proximity to chaining threads, which have been ignored in computations so far. However, first a realistic representation of the effective viscosity in computations is needed, which is not available yet.
Für Mutter und Kind konnte das Risiko der Geburt durch die Weiterentwicklung der Medizin drastisch reduziert werden. Doch wie ist es um das Wohl derer bestellt, die die Gebärende unterstützen? Eine Studie der Ostbayerischen Technischen Hochschule Regensburg hat sich mit den muskuloskelettalen Beschwerden von Geburtshelfer:innen auseinandergesetzt
Osteoporosis is a common disease of old age. However, in many cases, it can be very well prevented and counteracted with physical activity, especially high-impact exercises. Wearables have the potential to provide data that can help with continuous monitoring of patients during therapy phases or preventive exercise programs in everyday life. This study aimed to determine the accuracy and reliability of measured acceleration data at different body positions compared to accelerations at the pelvis during different jumping exercises. Accelerations at the hips have been investigated in previous studies with regard to osteoporosis prevention. Data were collected using an IMU-based motion capture system (Xsens) consisting of 17 sensors. Forty-nine subjects were included in this study. The analysis shows the correlation between impacts and the corresponding drop height, which are dependent on the respective exercise. Very high correlations (0.83–0.94) were found between accelerations at the pelvis and the other measured segments at the upper body. The foot sensors provided very weak correlations (0.20–0.27). Accelerations measured at the pelvis during jumping exercises can be tracked very well on the upper body and upper extremities, including locations where smart devices are typically worn, which gives possibilities for remote and continuous monitoring of programs.