• search hit 67 of 88
Back to Result List

FSI-simulation of ductile fracture propagation and arrest in pipelines

  • The fracture propagation and arrest control for pipelines transporting rich natural gases and high vapor pressure liquids is based on the Battelle Two-Curve Model (BTCM). Distinct limitations of this model were demonstrated for past and modern steels and gas mixtures. These can be related to the insufficient description of individual physical processes and interactions between the pipe material and transported mixture during the running ductile fracture. In the past, fluid-structure interaction (FSI) models enabled a more sophisticated, coupled analysis of the failure scenario. To quantify their capability of describing the multi-physical processes, the FSI models need to be verified by experimental data from full-scale burst tests (FSBT). Therefore, this paper deals with the simulation of five FSBTs from the literature on API grade X65 pipes with different pipe geometries, mixtures and initial conditions. The FSI is modeled by the coupled Euler-Lagrange (CEL) method. The modified Mohr-Coulomb (MMC) model is implemented in the CEL framework to describe the deformation and ductile fracture in the X65/L450 pipes. 3D Euler equations are used to calculate the mixture decompression with the GERG-2008 equation of state defining the volumetric behavior of a CO2-rich mixture, CH4 and H2. The extended model considers the effect of soil backfill on the pipe deformation and inertia. The numerical predictions agree well with the experimental findings in terms of the crack propagation speed and arrest length underlining the capability of the developed numerical tool.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Vincent KeimORCiD, Marcelo Paredes, Aida NonnORCiDGND, Sebastian Münstermann
DOI:https://doi.org/10.1016/j.ijpvp.2020.104067
Parent Title (English):International Journal of Pressure Vessels and Piping
Subtitle (English):Comparison with existing data of full-scale burst tests
Publisher:Elsevier
Document Type:Article
Language:English
Year of first Publication:2020
Release Date:2021/03/17
Tag:CO2 decompression; Crack arrest; Fluid-structure interaction; MMC model; Running ductile fracture
GND Keyword:Bruchmechanik; Fluid-Struktur-Wechselwirkung; Pipeline; Simulation
Volume:182
Issue:May
Article Number:104067
Institutes:Fakultät Maschinenbau
Technologie-Campus Neustadt an der Donau
Fakultät Maschinenbau / Computational Mechanics and Materials Lab (CMM)
Begutachtungsstatus:peer-reviewed
research focus:Energie und Mobilität
Licence (German):Keine Lizenz - Es gilt das deutsche Urheberrecht: § 53 UrhG