## 68U05 Computer graphics; computational geometry [See also 65D18]

### Refine

#### Keywords

- Modal analysis (1)
- geometric modeling (1)
- geometric optimization (1)
- model reduction (1)
- shape analysis (1)
- shape signatures (1)

In recent years, substantial progress in shape analysis has been achieved through methods that use the spectra and eigenfunctions of discrete Laplace operators. In this work, we study spectra and eigenfunctions of discrete differential operators that can serve as an alternative to discrete Laplacians for applications in shape analysis. We construct such operators as the Hessians of surface energies or deformation energies. In particular, we design a quadratic energy such that, on the one hand, its Hessian equals the Laplace operator if the surface is a part of the Euclidean plane, and, on the other hand, the Hessian eigenfunctions are sensitive to the extrinsic curvature (e.g. sharp bends) on curved
surfaces. Furthermore, we consider eigenvibrations induced by deformation energies, and we derive a closed form representation for the Hessian (at the rest state of the energy) for a general class of deformation energies. Based on these spectra and eigenmodes, we derive two shape signatures. One that measures the similarity of points on a surface, and another that can be used to identify features of surfaces.

We propose a framework for deformation-based surface modeling that is interactive, robust and intuitive to use. The deformations are described by a non-linear optimization problem that models static states of elastic shapes under external forces which implement the user input. Interactive response is achieved by a combination of model reduction, a robust energy approximation, and an efficient quasi-Newton solver. Motivated by the observation that a typical modeling session requires only a fraction of the full shape
space of the underlying model, we use second and third derivatives of a deformation energy to construct a low-dimensional shape space that forms the feasible set for the optimization. Based on mesh coarsening, we propose an
energy approximation scheme with adjustable approximation quality. The quasi-Newton solver guarantees superlinear convergence without the need of costly Hessian evaluations during modeling. We demonstrate the effectiveness of the approach on different examples including the test suite introduced in [Botsch and Sorkine 2008].

This work concerns the approximation of the shape operator of smooth surfaces in R^3 from polyhedral surfaces. We introduce two generalized shape operators that are vector-valued linear functionals on a Sobolev space of vector fields and can be rigorously defined on smooth and on polyhedral surfaces. We consider polyhedral surfaces that approximate smooth surfaces and prove two types of approximation estimates: one concerning the approximation of the generalized shape operators in the operator norm and one concerning the pointwise approximation of the (classic) shape operator. We show experimental results that confirm our estimates.