Refine
Labor/Institute
Keywords
- Artificial Intelligence (16)
- Fahrerassistenzsystem (16)
- ITS (Intelligent Transportation Systems) (16)
- Autonomes Fahrzeug (8)
- Künstliche Intelligenz (8)
- Prozesssteuerung (6)
- Bayesian Networks (4)
- OOBN (4)
- Hirntumor (3)
- Papierindustrie (3)
Year of publication
Document Type
- Conference Proceeding (21)
- Article (13)
- Part of a Book (5)
- Preprint (1)
Reviewed
- ja (7)
Learning Style Classification by Using Bayesian Networks Based on the Index of Learning Style
(2023)
Livable cities measure quality-of-life factors such as transportation, convenience of daily life, education, and a safe and stable built and natural environment. Livability of a city includes also some social and psychological factors, like emotion and perception. How do we realize the advantages of new technology under mixed traffic conditions, while observing all daily requirements on safety, convenience and high education needs?
The new generation of autonomous vehicles (AVs) are being designed to act autonomously and collect travel data based on various smart devices and sensors. The goal is to enable AVs to operate under their own power. Naturalistic driving studies (NDSs) collect data continuously from real traffic activities, in order not to miss any safety-critical event. In NDSs of AVs, however, the data they collect is influenced by various sources that degrade their forecasting accuracy. A convolutional neural network (CNN) is proposed to process a large amount of traffic data in different formats. A CNN can detect anomalies in traffic data that negatively affect traffic efficiency and identify the source of data anomalies, which can help reduce traffic congestion and vehicular queuing.
Conditional automated driving (CAD) systems (SAE level 3) will soon be introduced to the public market. This automation level is designed to take care of all aspects of the dynamic driving task in specific application areas and does not require the driver to continuously monitor the system performance. However, in contrast to higher levels of automation the "fallback-ready" user always has to be able to regain control if requested by the system. As CAD allows the driver to engage in non-driving-related tasks (NDRTs) past human factors research has looked at their effects on takeover time and quality especially in short-term takeover situations. In order to understand how takeover performance is impacted by different NDRTs, this paper summarizes and compares available results according to the NDRT's impact on the sensoric, motoric and cognitive transition. In addition, aspects of arousal and motivation are considered. Due to the heterogeneity of the empirical work and the available data practically relevant effects can only be attested for NDRTs that cause severe discrepancies between the current driver state and the requirements of the takeover task, such as sensoric and motoric unavailability. The paper concludes by discussing methodological issues and recommending the development of standardized methods for the future.
We outline the challenges of situation awareness with early and accurate recognition of traffic maneuvers and how to assess them. This includes also an overview of the available data and derived situation features,handling of data uncertainties, modelling and the approach for maneuver recognition. An efficient and effective solution, meeting the automotive requirements, is successfully deployed and tested on a prototype car. Test driving results show that earlier recognition of intended maneuver is feasible on average 1 second (and up to 6.72 s) before the actual lane-marking crossing. The even earlier maneuver recognition is dependent on the earlier recognition of surrounding vehicles.
This paper presents a novel application of artificial cognitive systems to traffic scene understanding and early recognition of highway maneuvers. This is achieved by use of Bayesian networks for knowledge representation, to mimic the human reasoning on situation analysis and to manage inherited uncertainties in the automotive domain, that requires efficient and effective analysis of high volume and frequency data streams. The maneuver recognition uses features, analyzing the observed vehicles behavior and available free space on the target lane. Dynamic Bayesian networks (DBN) capture the motion of the own and surrounding vehicles as a dynamic process, following the trend development of lateral motion features. The static and dynamic models for maneuver recognition are statistically evaluated with real highway driving data sequences. The DBN demonstrates earlier recognition (∼ 1.1 seconds) and higher accuracy (1.12% error rate) with more stable performance than the static models. The system is deployed on an experimental vehicle, where a Divide-and-conquer approach to inference in object-oriented Bayesian networks is introduced and its implementation is shown to require computation time of 0.15 milliseconds and ROM memory ∼ 10 2 kilobytes. The promising performance evaluation results are confirmed by test drives in real highway traffic.
This paper presents an application of Bayesian networks where early recognition of traffic maneuver intention is achieved using features of lane change, representing the relative dynamics between vehicles on the same lane and the free space to neighbor vehicles back and front on the target lane. The classifiers have been deployed on the automotive target platform, which has severe constraints on time and space performance of the system. The test driving has been performed with encouraging results. Even earlier recognition is possible by considering the trend development of features, characterizing the dynamic driving process. The preliminary test results confirm feasibility.
Kurzfassung Diese Arbeit stellt ein robustes wissensbasiertes Verfahren zur Lückenbewertung für Spur-wechselmanöver vor. Zur Modellierung wurden dynamische Bayes-Netzwerke eingesetzt und mit Hilfe von Lernalgorithmen die Erkennungsleistung verbessert. Die Testergebnisse zeigen eine sehr hohe Trefferquote.