Refine
Year of publication
Document Type
- Article (21)
- Other (10)
- Conference Proceeding (9)
- Part of a Book (1)
- misc (1)
Keywords
- PBF-LB/M (1)
- SPIT (1)
- SWIR (1)
- additive manufacturing (1)
- additive manufacturing processes (1)
- bilddaten (1)
- bilderkennung (1)
- corona (1)
- covid (1)
- galvanometer scanner (1)
Institute
Einsatz einer maschinell gelernten Bildsegmentierung zur Pulverbettüberwachung im Metalldruck
(2022)
Der Schwerpunkt der folgenden Ausführungen ist auf eine schichtweise Erkennung von Abweichungen durch die automatisierte Analyse von Bilddaten aus pulverbettbasierten Metalldruckprozessen gelegt. Bei diesen Prozessen wird eine dünne Schicht im Bereich von 20 bis 100 μm aus pulverförmigem Metallpulver aufgetragen. Ein zweidimensionaler Querschnitt des gewünschten Bauteils wird dann entweder mit einer selektiven Wärmequelle aufgeschmolzen oder mit einem Bindemittel zusammengebunden. Anschließend wird das Substrat um die Höhe einer Pulverschicht abgesenkt und der Vorgang wiederholt, bis der Aufbau abgeschlossen ist. Nach dem Abschluss des Aufschmelzens einer Schicht wird ein Bild mittels einer Kamera im sichtbaren Wellenlängenbereich erstellt. Abbildung 1 zeigt zwei Beispiele solcher Bilder. Diese bilden die Eingangsgröße für die Erkennung von Abweichungen. Durch die gewählte Schichtdicke kann die Herstellung eines Bauteils mehrere tausend Bilder erzeugen. Die automatisierte und zeitnahe Auswertung ist daher Inhalt aktueller Forschungs- und Entwicklungsaktivitäten [1]. Nicht zuletzt da die notwendige Sensorik – eine Kamera – wirtschaftlich und robust einsetzbar ist.
Eines der zentralen strategischen Ziele unserer Hochschule ist die Internationalisierung, sowie der »internationalisation@home«. Als die weltweite Corona-Pandemie die Präsenzlehre und -forschung ebenso wie den internationalen Austausch von Studierenden und Forschenden zu Beginn 2020 quasi zum Erliegen brachte wurden die Rufe nach digitalen Angeboten im internationalen Bereich schnell laut. Vor diesem Hintergrund reagierte der »Deutsche Akademische Auslandsdienst (DAAD)« mit der kurzfristig ins Leben gerufenen Förderlinie »International Virtual Academic Collaboration« (IVAC), um internationale Hochschulkooperationen und weltweite Mobilität unter digitalen Vorzeichen strategisch zu gestalten und auszubauen [1].
Nowadays, additive manufacturing processes are becoming more and more appealing due to their production-oriented design guidelines, especially with regard to topology optimisation and minimal downstream production depth in contrast to conventional technologies. However, a scientific path in the areas of quality assurance, material and microstructural properties, intrinsic thermal permeability and dependent stress parameters inhibits enthusiasm for the potential degrees of freedom of the direct metal laser melting process (DMLS). Especially in quality assurance, post-processing destructive measuring methods are still predominantly necessary in order to evaluate the components adequately. The overall objective of these investigations is to gain process knowledge make reliable in situ statements about component quality and material properties based on the process parameters used and emission values measured. The knowledge will then be used to develop non-destructive tools for the quality management of additively manufactured components. To assess the effectiveness of the research design in relation to the objectives for further investigations, this pre-study evaluates the dependencies between the process parameters, process emission during manufacturing and resulting thermal diffusivity and the relative density of samples fabricated by DMLS. Therefore, the approach deals with additively built metal samples made on an EOS M290 apparatus with varying hatch distances while simultaneously detecting the process emission. Afterwards, the relative density of the samples is determined optically, and thermal diffusivity is measured using the laser flash method. As a result of this pre-study, all interactions of the within factors are presented. The process variable hatch distance indicates a strong influence on the resulting material properties, as an increase in the hatch distance from 0.11 mm to 1 mm leads to a drop in relative density of 57.4%. The associated thermal diffusivity also reveals a sharp decrease from 5.3 mm2/s to 1.3 mm2/s with growing hatch distances. The variability of the material properties can also be observed in the measured process emissions. However, as various factors overlap in the thermal radiation signal, no clear assignment is possible within the scope of this work.
Additive manufacturing processes, particularly Laser-Based Powder Bed Fusion of Metals (PBF-LB/M), enable the development of new application possibilities due to their manufacturing-specific freedom of design. These new fields of application require a high degree of component quality, especially in safety-relevant areas. This is currently ensured primarily via a considerable amount of downstream quality control. Suitable process monitoring systems promise to reduce this effort drastically. This paper introduces a novel monitoring method in order to gain process-specific thermal information during the manufacturing process. The Synchronized Path Infrared Thermography (SPIT) method is based on two synchronized galvanometer scanners allowing high-speed and high-resolution observations of the melt pool in the SWIR range. One scanner is used to steer the laser over the building platform, while the second scanner guides the field of view of an IR camera. With this setup, the melting process is observed at different laser powers, scan speeds and at different locations with respect to the laser position, in order to demonstrate the positioning accuracy of the system and to initially gain thermal process data of the melt pool and the heat-affected zone. Therefore, the SPIT system shows a speed independent overall accuracy of ±2 Pixel within the evaluated range. The system further allows detailed thermal observation of the melt pool and the surrounding heat-affected zone.
C7. 4 Application of Laser Line Scanners for Quality Control during Selective Laser Melting (SLM)
(2021)