Refine
Document Type
- Conference Proceeding (16)
- Article (4)
- Part of a Book (1)
- Other (1)
Keywords
Institute
Energy efficiency and operation safety in energy conversion, process technology, and aerospace engineering requires advanced material investigation, in particular at high temperatures to characterize the materials and components. Additionally, modern additive manufacturing methods, in particular the 3D metal laser printer requires a detailed control of the melting temperature. Many applications are based on a layered structures, e.g. thermal barrier coatings in gas turbines. Also components manufactured by additive manufacturing pose a layered structure. In these structures the mechanical contact between the layers and to the substrate is of high interest. Besides, the complete characterisation of the additive manufactured component is important for its later application. To cope with these new demands, the University of Applied Sciences Wuerzburg - Schweinfurt (FHWS) and the Bavarian Center for Applied …
Hochtemperaturmessung und Materialuntersuchung für Energietechnik und additive Fertigungsverfahren
(2017)
Untersuchung von Materialeigenschaften additiv gefertigter Proben abhängig von der relativen Dichte
(2020)
To address the needs for increasing efficiency in power conversion, stratified structures like thermal barrier coatings, are used to increase operation temperature. Also advanced material processing like 3D laser printing of metals and ceramics are based on a layer-to-layer process at high temperatures, resulting in non-homogeneous components. Both systems require more and more detailed investigation methods to characterise the material properties of the resulting structures and to optimize the relevant processes. To address the required needs in advanced material characterisation recently an attempt was started to develop a unique measurement set-up for advanced material characterisation. This method is based on the well know laser flash principle, which was improved by adding supplementary heating sources and additional detection channels. Combining different heating mechanism and heating times with the two-dimensional measuring of the thermal flow across the sample enables the determination of different opto-thermal parameters and other material properties, e.g. mechanical contact, electrical conductivity or optical data, which also depend on or affect the flow of heat. In this paper we describe the implementation of the different optical methods to measure the thermal heat flow by point-like and two-dimensional temperature measurement and present first results on several samples.
Das direkte Metall-Laser-Schmelzen (DMLS) aus der Familie der Additiven Fertigungsverfahren (AM) ermöglicht die schichtweise Erzeugung komplexer dreidimensionaler Geometrien mit hoher relativer Dichte unter Verwendung von Metallpulver als Ausgangsmaterial [1]. Die Technologie wird zunehmend eingesetzt, um innovative Bauteile material- und gewichtssparend herzustellen oder komplexe Produkte ohne zusätzliche Werkzeuge oder Spannvorrichtungen zu fertigen. Darüber hinaus sind Funktionsintegrationen, zum Beispiel Gussformen mit eingeprägten Kühlkanälen, möglich. Da einzelne Metallpulverschichten auf vorhergehende Schichten aufgeschmolzen werden, entstehen während der Herstellung des Bauteils komplexe, zeitabhängige Temperaturprofile [2]. Durch den Einsatz hoher Laserintensitäten und Scangeschwindigkeiten, bei denen die Belichtungszeit der Laserbestrahlung im Bereich von Millisekunden liegt, werden zudem extrem hohe Aufheiz- und Abkühlraten induziert, die zu einzigartigen Mikrostrukturen und Materialeigenschaften führen [3].
Diese extremen Prozessbedingungen können sich jedoch auch negativ auf den Fertigungsprozess auswirken. Bei komplexen Bauteilen bleibt die Prozessstabilität und Qualitätssicherung Umfragen zufolge weiterhin die wichtigste technologische Barriere für den Einsatz additiv gefertigter Bauteile in hochbelasteten oder sicherheitsrelevanten Bereichen [4]. Daher verspricht der Zusammenhang zwischen Temperaturprofil während der Fertigung, relativer Dichte der Bauteile, sowie thermophysikalischer Eigenschaften additiv gefertigter Proben wichtige Erkenntnisse, insbesondere im Hinblick auf eine zerstörungsfreie Qualitätssicherung, sowie neue Anwendungsmöglichkeiten.
Industriezweige wie die Glas-Industrie, die Kraftwerkstechnik sowie die Luft- und Raumfahrttechnik müssen kontinuierlich neue Methoden entwickeln, sowie bestehende Verfahren optimieren, um in ihren Bereichen wettbewerbsfähig zu sein bzw. neue Anforderungen an Umwelt- und Klimaschutz zu erfüllen. Dies beinhaltet oft die Entwicklung neuer Materialien, die leichter zu fabrizieren sind und sowohl mechanisch als auch thermisch höheren Belastungen standhalten. Für die genannten Industriezweige sind Prozesse mit hohen Betriebstemperaturen bis zu 3.000 °C kennzeichnend und damit ist die Kenntnis von Materialeigenschaften bei diesen extremen Temperaturen von großer Bedeutung. Auch wenn es bereits einige Messapparaturen für die Bestimmung von thermophysikalischen Materialdaten bei hohen Temperaturen gibt, muss die Rückführung dieser auf die SI Basiseinheiten gewährleistet werden, um die Zuverlässigkeit der gemessenen Daten für die Anforderung der genannten Branchen sicherzustellen.
Diese Aufgabe ist das Ziel des EMPIR-(European Metrology Programme for Innovation and Research) Projektes Hi-TRACE [1]. Hi-TRACE zielt darauf ab, Referenzapparaturen und neue
Methoden für die Messung von thermophysikalischen Materialeigenschaften, (thermische Diffusivität, spezifische Wärme, Emissionsgrad und Schmelztemperatur) sowie der Haftung
von Schichten über 1.000 °C zu bestimmen.
thermal diffusivity measurements by the laser flash method in the temperature range
from 23 °C to 3000 °C. The main objective was to assess the variability and coherency
of thermal diffusivity measurements performed at ultra-high temperatures at
the European level. Three refractory materials (molybdenum, tungsten and isotropic
graphite IG210) were selected for this inter-laboratory comparison, due to their high
melting point. The disk-shaped specimens needed were machined from the same
blocks of materials in order to reduce any potential scattering of results between
participants due to inhomogeneity effects.
The homogeneity of the sets of specimens was studied by the pilot laboratory (LNE)
before launching the comparison process. Thermal diffusivity measurements were
then carried out by the seven participants on the three materials during two successive
thermal cycles up to the maximum temperatures that can be reached by the
devices used. The analysis of results showed a good agreement between the participants
for temperatures above 400 °C, with relative deviations within the uncertainties
of measurement and lower than ± 4 % for molybdenum, ± 5 % for isotropic
graphite and ± 9 % for tungsten.
Die Effizienzsteigerung moderner Gasturbinen erfordert die stetige Anhebung der Betriebstemperatur. Die derzeitigen Brenngastemperaturen liegen mit über 1400 °C signifikant über der kritischen Temperatur der verwendeten Turbinenstähle. Zur Gewährleistung der Betriebssicherheit werden die Turbinenschaufeln neben Aktivkühlung durch Beschichtung mit thermischen Schutzschichten, sogenannten thermal barrier coatings (TBC), geschützt. Da es sich bei den TBC um Keramikschichten handelt, ist für die Erhöhung der Haftfestigkeit das Aufbringen eines Haftvermittlers (Verbindungsschicht) notwendig. Da die Eigenschaften dünner Schichten stark von den Eigenschaften des Bulkmaterials abweichen können und zudem von der Herstellungsmethode beeinflusst werden, ist eine Untersuchung der thermischen und infrarot-optischen Eigenschaften der tatsächlichen Schichtstrukturen unumgänglich, insbesondere im Hochtemperaturbereich. Hierfür wurden Proben des reinen Trägerstahls, des Trägerstahls mit Haftvermittlerschicht und des kompletten Schichtsystems aus Trägerstahl, Haftvermittlerschicht und Wärmedämmschicht verschiedener Dicken hergestellt und mittels Laser-Flash-Methode untersucht. Die Auswertung erfolgte dabei analytisch, ausgehend von der Trägerstahl-Einschichtprobe, über die Zweischicht- und Dreischichtsysteme. Vervollständigt wurden diese Untersuchungen durch infrarot-optische Charakterisierungen, mit denen sich die Wärmeausbreitung durch die Schichtsysteme beschreiben lässt. Zusammen mit den Laser-Flash Messungen erlaubt dies eine spätere Quantifizierung der einzelnen, bei Keramiken auftretenden, Wärmetransportmechanismen.