BAM Videos
Filtern
Dokumenttyp
- Video (8)
Sprache
- Englisch (8)
Referierte Publikation
- nein (8)
Schlagworte
- X-ray scattering (4)
- MOUSE (3)
- SAXS (2)
- 3D FFT (1)
- Alkali activated concrete (1)
- Antiadhesive surfaces (1)
- Bacteria-repellent surfaces (1)
- Bacterial adhesion tests (1)
- Building industriy (1)
- CO2 footprint (1)
Organisationseinheit der BAM
- 6 Materialchemie (6)
- 6.5 Synthese und Streuverfahren nanostrukturierter Materialien (5)
- 8 Zerstörungsfreie Prüfung (2)
- 8.0 Abteilungsleitung und andere (2)
- 4 Material und Umwelt (1)
- 4.1 Biologische Materialschädigung und Referenzorganismen (1)
- 6.0 Abteilungsleitung und andere (1)
- 6.2 Grenzflächenprozesse und Korrosion (1)
- S Qualitätsinfrastruktur (1)
- S.3 eScience (1)
This talk highlights a proof-of-concept that demonstrates the ability to calculate high-resolution Fourier transforms. These can be combined with multi-scale modeling to simulate scattering over a wide range, from small-angle scattering to XRD and PDF.
The preprint documenting this is available on the ArXiv here:
https://doi.org/10.48550/arXiv.2303.13435
The Jupyter notebook, VASP calculation details and MOUSE measured scattering patterns are available from this Zenodo repository: https://dx.doi.org/10.5281/zenodo.7764045
This is a remote presentation I gave at the 2022 Small-angle Scattering conference in Campinas, Brazil. The video has been obtained from the conference organisers with their explicit permission for use on YouTube. I've tried to spruce up the audio from the remote recording the best I could.
The conference abstract for this talk was:
"How much do we, the small-angle scatterers, influence the results of an investigation? What uncertainty do we add by our human diversity in thoughts and approaches, and is this significant compared to the uncertainty from the instrumental measurement factors?
After our previous Round Robin on data collection, we know that many laboratories can collect reasonably consistent small-angle scattering data on easy samples[1]. To investigate the next, human component, we compiled four existing datasets from globular (roughly spherical) scatterers, each exhibiting a common complication, and asked the participants to apply their usual methods and toolset to the quantification of the results (https://lookingatnothing.com/index.ph....
Accompanying the datasets was a modicum of accompanying information to help with the interpretation of the data, similar to what we normally receive from our collaborators. More than 30 participants reported back with volume fractions, mean sizes and size distribution widths of the particle populations in the samples, as well as information on their self-assessed level of experience and years in the field.
While the Round Robin is still underway (until the 25th of April, 2022), the initial results already show significant spread in the results. Some of these are due to the variety in interpretation of the meaning of the requested parameters, as well as simple human errors, both of which are easy to correct for. Nevertheless, even after correcting for these differences in understanding, a significant spread remains. This highlights an urgent challenge to our community: how can we better help ourselves and our colleagues obtain more reliable results, how could we take the human factor out of the equation, so to speak?
In this talk, we will introduce the four datasets, their origins and challenges. Hot off the press, we will summarize the anonymized, quantified results of the Data Analysis Round Robin. (Incidentally, we will also see if a correlation exists between experience and proximity of the result to the median). Lastly, potential avenues for improving our field will be offered based on the findings, ranging from low-effort yet somehow controversial improvements, to high-effort foundational considerations."
In our current research project „Reincarnate“ we aim to anchor the idea of the circular economy in the European construction industry and significantly extend the life cycle of buildings, construction products and materials through innovative solutions. On the long term, this is an approach reduce construction waste by 80 percent and the CO2 footprint of the construction sector by 70 percent."
This project has received funding from the European Union’s Horizon Europe research and innovation programme and will take you on a tour on what are the drivers, what is the goal, who are the partners and how we want to make the world a better place!
With 8% of man-made CO2 emissions, cement production is an important driver of the climate crisis. By using alkali-activated binders, part of the energy-intensive clinker production process can be dispensed. However, as numerous raw materials are involved in the manufacturing process here, the complexity of the materials increases by orders of magnitude. Finding a properly balanced binder formulation is like looking for a needle in a haystack. We have shown for the first time that artificial intelligence (AI)-based optimization of alkali-activated binder formulations can significantly accelerate research.
The "Sequential Learning App for Materials Discovery" (SLAMD) aims to accelerate practice transfer. With SLAMD, materials scientists have low-threshold access to AI through interactive and intuitive user interfaces. The value added by AI can be determined directly. For example, the CO2 emissions saved per ton of cement can be determined for each development cycle: the more efficient the AI optimization, the greater the savings.
Our material database already includes more than 120,000 data points of alternative binders and is constantly being expanded with new parameters. We are currently driving the enrichment of the data with a life cycle analysis of the building materials.
Based on a case study we show how intuitive access to AI can drive the adoption of techniques that make a real contribution to the development of resource-efficient and sustainable building materials of the future and make it easy to identify when classical experiments are more efficient.
An extremely brief summary of what X-ray scattering can do for you (X-ray scattering encompasses small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS/XRD), amongst others). See my other videos for more detailed explanations on sample selection, data correction, data analysis, etc.
This 6 minute long MP4-video presents some key results of the European research project "BioCombs4Nanofibers" to the broader public. Inspired by nature, some concepts of certain types of spiders are transferred to technology in order to develop bacteria-repellent surfaces through laser surface nanostructuring.
Funding notice: This study was funded by the European Union's research and innovation program under the FET Open grant agreement No. 862016 (BioCombs4Nanofibers, http://biocombs4nanofibers.eu).
The SAXS platform at BAM
(2021)