Umweltschadstoffe
Filtern
Dokumenttyp
- Zeitschriftenartikel (14)
- Posterpräsentation (12)
- Vortrag (10)
- Sonstiges (1)
Schlagworte
- Trichodiene (4)
- Boden (3)
- Mikroplastik (3)
- Mycotoxin Biomarker (3)
- Transformation products (3)
- Chemometrics (2)
- DFA (2)
- Fusarium (2)
- GC-MS (2)
- Gaschromatography-Mass Spectrometry (2)
Organisationseinheit der BAM
- 1.7 Organische Spuren- und Lebensmittelanalytik (37) (entfernen)
Annually vast amounts of plastics are produced world-wide. However, recycling and waste management is still insufficient resulting in large quantities of plastics being released into the environment. Degradation by sunlight, mechanical and biological factors lead to the breakdown of this waste into little fragments. By convention particles smaller than 5 mm are referred to as microplastics (MP). The occurrence of MP has been reported by researchers virtually all around the globe. Gaining knowledge on MP is currently a time-consuming process because analysis mainly relies on micro-infrared and micro-Raman methods. Prior to that the particles need to undergo purification and enrichment. Thus, only small numbers and volumes of samples can be investigated. Here we tested NIR spectroscopy combined with a multivariate data analysis as a means of speeding up the process of MP analysis.
Experiments were performed using the most abundant polymers polyethylene, polypropylene, polyethylene terephthalate and polystyrene. MP samples were obtained by adding the cryomilled and sieved (<125 µm) particles to approximately 1 g of standard soil at 0,5–10 mass%. Spectra were recorded with a fiber optic reflection probe connected to a FT-NIR spectrometer. 5–10 spectra recorded of each sample were used for the calibration of chemometric models (partial least squares regression, PLSR). “Unknown” test samples were then used to test the model’s capability to predict the type and amount of polymer.
In samples containing 1–5 % of the polymers the prediction yielded the highest degree of agreement with the gravimetric reference values. At low polymer loads some false positive results in the identification were observed. Large amounts of polymers limited the prediction capability by a nonlinear behaviour of the absorption. Further testing was done with real world samples such as compost and washing machine filters. Even though the calibration did not account for these highly complex sample compositions, satisfactory results could be achieved.
Das Therapeutikum Warfarin ist bis heute der bekannteste Vertreter der antikoagulanten Rodentizide. In dieser Arbeit wurden Phase I Metabolite mittels einer elektrochemischen Durchflusszelle simuliert und analysiert. Weitere Transformations- und Abbauprozesse wurde durch UV-Bestrahlung und Ozonung generiert, gaschromatographisch getrennt und miteinander verglichen.
Polycyclic aromatic hydrocarbons (PAH) can contaminate plastic and rubber parts of consumer products including toys. PAH are present as impurities in some of the raw materials used for production of such articles, particularly in extender oils and in carbon black. Because PAH have negative effects on health (e.g. carcinogenic), standard methods have been developed in several countries to control PAH in consumer/toy products, mainly based on gas-chromatography mass-spectrometry (GC-MS).
To protect consumers from hazards of PAH, national regulations and maximum levels are already in force, for example in Germany. Recently, maximum levels for 8 PAH compounds (benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[j]fluoranthene, benzo[e]pyrene, benzo[a]pyrene and dibenz[a,h]anthracene) have been established by EC-regulation 1272/2013. This resulted in an urgent need for certified reference materials (CRM) to meet the requirements of the EC-regulation (1 mg/kg for each PAH compound in consumer products and 0.5 mg/kg in toys, respectively).
In 2016 BAM started a project to certify the PAH mass fractions in a toy CRM to fill the current gap of available reference materials. Several different toys from retailers were screened to obtain a real-life material representing PAH mass fractions in the range of the EC-maximum level. The finally selected material (rubber balls for children) was prepared and characterized with respect to homogeneity and stability of 18 PAH. The extension to other health-relevant PAH compounds, e.g. indeno[1,2,3-cd]pyrene and benzo[ghi]perylene, will increase the applicability of the CRM for costumers, e.g. from industry, conformity assessment bodies and private testing laboratories.
The poster will present the current status of the ongoing CRM project including preparation of the candidate material and results from homogeneity and stability studies. In addition, first results of a joint German-Chinese interlaboratory comparison study will be shown.
Aim: To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables.
Methods and Results: We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points.
Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected.
The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production.
Conclusions: Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscapescale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables.
Significance and Impact of the Study: We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat.
Zu den letzten beiden Jahrestagungen der GUS wurden Verfahren und Methoden vorgestellt, die es gestatten, den Transfer von Schadstoffen aus Materialien und Produkten in die Umwelt unter umweltrelevanten Bedingungen beschreiben zu können. Dabei lag der Fokus auf den Materialien und der eingesetzten Umweltsimulationen. In einem sich anschließenden Schritt soll nun das Verhalten der freigesetzten organischen Schadstoffe unter den Bedingungen von realen und simulierten Umwelteinflüssen charakterisiert und beschrieben werden. Hier werden im Detail drei potentielle Schadstoffe betrachtet, die Inhaltsstoffe bzw. Additive in den jeweils eingesetzten Materialien sind. Im Falle von Polypropylen (PP) und Polystyrol (PS) handelt es sich um polybromierte Flammschutzmittel BDE 209 (Decabrom-diphenylether, als Einzelsubstanz) und HBCD (Hexabromcyclododecan, als technische Formulierung). Für das eingesetzte Polycarbonat ist BPA (Bisphenol A) als Schadstoff zu definieren, welcher unter umweltrelevanten Bedingungen freigesetzt wird. Im Rahmen der durchzuführenden Arbeiten sollen die aufgeführten prioritären Schadstoffe hinsichtlich möglicher Transformationsprozesse in Umwelt und Klärwerk charakterisiert werden. Die unter den Bedingungen der Ozonung, Chlorierung und UV-Bestrahlung erhaltenen Transformationsprodukte (TPs) sollen im Sinne einer Non-Target-Analytik identifiziert und eindeutig charakterisiert werden. Die Ergebnisse sollen mittels vorhandener Analysenverfahren, wie GC-EI-MS, HPLC-ESI-IT-MSn bzw. LC-MS/MS erzeugt bzw. abgesichert werden. Anhand der in der Struktur eindeutig zu beschreibenden Transformationsprodukte und der Charakterisierung von potentiellen Intermediaten sollen belastbare Reaktionswege und –mechanismen abgeleitet werden.
Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe (polybromierte Flammschutzmittel) in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden.
An alternative spectroscopic approach for the monitoring of microplastics in environmental samples
(2017)
The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown fate. To monitor the degree of contamination and to understand the underlying processes of turnover, analytical methods are urgently needed, which help to identify and quantify microplastic (MP). Currently, costly collected and purified materials enriched on filters are investigated both by micro-infrared spectroscopy and micro-Raman. Although yielding precise results, these techniques are time consuming and restricted to sample aliquots in the order of micrograms precluding prompt and representative information on both, larger sample numbers and realistic material volumes. To overcome these problems, here we tested Raman and NIR process-spectroscopic methods in combination with multivariate data analysis.
For this purpose, artificial MP/soil mixture samples consisting of standard soils or sand with defined ratios of MP (0,5 – 10 mass% polymer) from polyethylene, polypropylene, and polystyrene were prepared. MP particles with diameters < 2 mm and < 125 µm were obtained from industrial polymer pellets after cryomilling. Spectra of these mixtures were collected by (i) a process FT-NIR spectrometer equipped with a reflection probe, (ii) by a cw-process Raman spectrometer and (iii) by a time-gated Raman spectrometer using fiber optic probes. For the calibration of chemometric models (partial least squares regression, PLSR) 5 – 10 spectra of defined MP/soil mixtures (consisting of 1 – 4 g material each) were collected. The obtained PLSR models served for the prediction of both, polymer type and content based on the spectra of “unknown” test samples.
Whereas MP could be detected by Raman spectroscopy in coastal sand at 0.5 mass%, in standard soils detection of MP was limited to 10 – 5 mass%. The sensitivity of Raman spectroscopy could be improved by mild treatment with hydrogen peroxide. FT-NIR was suitable for the investigation of MP in standard soils in the range of 5 – 1 mass%, however, here a non-linear effect was observed at higher polymer concentrations. When mixtures of several polymers at low concentration levels were milled together, FT-NIR spectroscopy yielded false positive polymers together with unprecise quantitative information. Recently, the investigation of “real-world” samples shall be tested and compared to the results obtained by micro-FTIR and micro-Raman.
Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy.
Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks.
Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers.
Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer.
Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular.