8.7 Thermografische Verfahren
Filtern
Dokumenttyp
- Zeitschriftenartikel (6) (entfernen)
Sprache
- Deutsch (6) (entfernen)
Schlagworte
- Aktive Thermografie (3)
- Zerstörungsfreie Prüfung (3)
- Thermografie (2)
- Thermography (2)
- 3D-Kartierung (1)
- Ablösung (1)
- Active thermography (1)
- Bauwerkserhaltung/Sanierung (1)
- Beton (1)
- Brick tile (1)
Organisationseinheit der BAM
Mit Laserlicht kann man eine Materialoberfläche berührungslos und schnell moduliert aufheizen. Dabei entsteht eine stark gedämpfte Wärmewelle, die tief ins Material eindringen kann. Erzeugt und überlagert man solche thermischen Wellen auf kohärente Weise, dann kann man damit versteckte Materialfehler zerstörungsfrei und sehr präzise aufspüren. Sogar eine bildgebende Tomografie ist denkbar.
Im Bauwesen werden Polymerbeschichtungen auf Beton häufig eingesetzt um zum einen, ein bestimmtes Aussehen zu schaffen und zum anderen, das Bauteil vor Alterung, Verschleiß und Schädigung zu schützen. Für praktisch alle Ziele ist die Wirkung von der eigens dafür definierten Schichtdicke der Polymerbeschichtung abhängig. Daher wird die Dicke der Beschichtung nach erfolgtem Schichtauftrag überprüft. Für den in diesem Zusammenhang anspruchsvollen mineralischen Untergrund Beton stehen bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aus diesem Grund wurden im Rahmen des Projektes IRKUTSK ein auf aktiver Thermografie basierendes Verfahren sowie ein Gerät für den vor-Ort-Einsatz entwickelt, mit dessen Hilfe eine zerstörungsfreie Schichtdickenbestimmung möglich ist. Hier wird ein kurzer Einblick in das zur Schichtdickenbestimmung entwickelte Thermografieverfahren gegeben. Die Besonderheiten bei der quantitativen Auswertung, die durch die Teiltransparenz der Polymerbeschichtungen auftreten, werden erläutert. Die Funktion des Verfahrens für einlagige Systeme wird anhand von Labormessungen mit verschiedenen optischen Quellen zur thermischen Anregung illustriert.
In diesem Beitrag werden zerstörungsfreie Untersuchungen mittels aktiver Thermografie an Probekörpern aus CFK und GFK mit unterschiedlichen künstlichen Fehlstellen vorgestellt. Dabei wird die zeitliche und örtliche Temperaturverteilung nach der Erwärmung mit Blitzlampen oder mit einem Infrarot-Strahler mit einer Infrarot-Kamera erfasst. Zur späteren Rekonstruktion der Messdaten wurde ein numerisches Modell entwickelt. Dazu war die Bestimmung der thermophysikalischen und optischen Materialeigenschaften erforderlich, was in diesem Beitrag ebenfalls beschrieben wird. Die Ergebnisse der numerischen Modellierung werden mit den experimentellen Untersuchungen der aktiven Thermografie verglichen. Weiterhin werden die experimentellen Untersuchungen hinsichtlich der beiden Materialsysteme CFK und GFK und unter Berücksichtigung der Teiltransparenz des GFK-Materials sowie der unterschiedlichen Anregungsquellen bewertet.
Die Bewertung des Zustandes und der Haftung von Putz und Fassadenelementen auf den darunterliegenden Bauwerksstrukturen ist eine häufig auftretende Fragestellung bei der Erhaltung und Instandsetzung von Bauwerken und Baudenkmälern. Hier müssen nicht nur wirtschaftliche und denkmalpflegerische, sondern auch sicherheitsrelevante Aspekte berücksichtigt werden. Fehlstellen und Ablösungen können, auch wiederholend, mit hoher Nachweisempfindlichkeit mit aktiven Thermografieverfahren geortet und unter bestimmten Voraussetzungen quantitativ bewertet werden. Dazu wird der zu untersuchende Bereich zunächst kurzzeitig (mehrere Minuten lang) erwärmt und anschließend die Abkühlung mit einer Infrarotkamera aufgezeichnet. Systematische Untersuchungen an Probekörpern mit einer Vielzahl unterschiedlicher Fehlstellen unterhalb von Kalkputz, Fliesen und Klinkerriemchen zeigen, dass die Fehlstellen sowohl mittels künstlicher Erwärmung durch einen Infrarotstrahler als auch mittels natürlicher Erwärmung durch die Sonne detektiert und charakterisiert werden können. ---------------------------------------------------------------------------------------------------------------------------------------
The evaluation of condition and adhesion of plaster and façade elements to the underlying building structure is a common issue in the maintenance and repair of buildings and monuments. Here not only economic and preservation, but also safety relevant aspects have to be considered. Voids and delaminations can be detected repeatedly with high sensitivity using active thermography methods. Under certain conditions, also a quantitative evaluation is possible. The area under investigation has to be heated up for a short time (up to several minutes). Subsequently, the cooling down is recorded using an infrared camera. Systematic studies on test specimens with a variety of defects below lime plaster, tiles and brick tiles show that the defects can be detected and even characterized both by means of artificial heating using an infrared heater, as well as by natural solar heating.
Wärmebehandlung und zerstörungsfreie Prüfung: Oberflächenrisse mit der Laser-Thermografie finden
(2015)
Die Thermografie als zerstörungsfreies Prüfverfahren erlaubt das Erkennen einer Vielzahl von Defekten in unterschiedlichsten Werkstoffen. Hierzu ist zum einen eine Energiequelle erforderlich, welche einen Wärmestrom im Werkstück erzeugt, und zum anderen eine Infrarot-Kamera, welche den orts- und zeitabhängigen Temperaturverlauf der Werkstückoberfläche analysiert. Neue Ansätze unter Verwendung von Lasern ermöglichen nun auch die Prüfung auf winzige Oberflächenrisse. Die aktuelle Grenze der Nachweisempfindlichkeit für mittels klassischer Thermografie nur schwer prüfbare hochreflektierende Metalloberflächen liegt mit Rissbreiten und -tiefen bis hinunter in den Sub-Mikrometerbereich und damit im Bereich der fluoreszierenden Magnetpulver- und Eindringprüfung. Dabei sind jedoch weder Verbrauchsmittel, noch eine Oberflächenpräparation notwendig und eine Prüfung kann berührungslos und automatisiert über Entfernungen bis in den Meter-Bereich erfolgen. Bei der Wärmebehandlung und insbesondere beim Randschichthärten mittels Laserstrahlung stehen ebenfalls hochleistungsfähige Energiequellen zur Erzeugung intensiver dynamischer Temperaturgradienten zur Verfügung. Damit eröffnet sich unmittelbar die Möglichkeit der Integration der thermografischen Prüfung in die Fertigung. Der Beitrag stellt die neuesten Entwicklungen der vielversprechenden Laser-Thermografie-Technik vor und zeigt, warum deren Einsatz potentiell die Standardprüfverfahren Magnetpulver- bzw. Eindringprüfung für eine Reihe von Prüfproblemen beerben könnte.
Die messtechnische Erfassung von Bauwerkschäden ist eine wichtige Voraussetzung für die dreidimensionale und zeitaufgelöste Darstellung von möglicherweise sicherheitsrelevanten Veränderungen an Bauwerken, wie z. B. Verformungen, Verwindungen und Risswachstum. Ziel des vorgestellten Projektes war die Entwicklung eines Verfahrens zur effizienten und wiederholbaren 3D-Schadenkartierung an zum Teil empfindlichen Bauteiloberflächen.