## 7.2 Ingenieurbau

### Filtern

#### Erscheinungsjahr

- 2017 (75) (entfernen)

#### Dokumenttyp

- Vortrag (31)
- Zeitschriftenartikel (19)
- Beitrag zu einem Tagungsband (18)
- Buchkapitel (3)
- Posterpräsentation (3)
- Dissertation (1)

#### Schlagworte

- Finite element method (7)
- Ground vibration (7)
- Axial force (5)
- Dynamic test (5)
- Truss structures (5)
- Inspection (4)
- Modal parameters (4)
- Model updating (4)
- Monitoring (4)
- Optimization technique (4)

#### Organisationseinheit der BAM

- 7.2 Ingenieurbau (75) (entfernen)

In this paper a shear test, which helps to study local behavior of the soil-pile interaction, is modelled numerically with the Finite Element Method as a 2D plane strain problem. A normal pressure on top and shear displacement on side were applied. So far, the material behavior was considered elastic for the sake of simplicity.
The effect of thickness on contact elements and the presence of in plane stress has been highlighted. The purpose of the paper is to find a suitable contact element which represents more close to reality a soil-pile interaction problem under cyclic axial loading. Moreover, an insight on the presence of in-plane stress shows that it needs to be considered cautiously.

This paper deals with vibration-based damage localization and quantification from output-only measurements. We describe an approach which operates on a data-driven residual vector that is statistically evaluated using information from a finite element model, without updating the parameters of the model. First, the damaged elements are detected in statistical tests, and second, the damage is quantified only for the damaged elements. We propose a new residual vector in this context that is based on the transfer matrix difference between reference and damaged states, and compare it with a previously introduced subspace-based residual. We show localization and quantification on both residuals in simulations.

We focus here on the major and still relevant issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of identifying more precisely the local mechanisms responsible for soil particle erosion and ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests.

A great deal is possible, even on the seabed. Together, wind and waves shake the foundations of the offshore wind turbines. "ere is also the “normal” current and ebb and #ow of the tides that are so distinctive in the North Sea. Pore water pressure can also occur on the seabed, loosening it. Where monopiles are involved, the worst case is that the stability of the whole turbine can be altered – even if such a monopile rammed into the seabed has a diameter of up to eight metres. Over half the planned offshore wind turbines in the North and Baltic Seas are to have monopile foundations, and over 40 % are to have multi-pile foundations, designed for example as a tripod. "is is why pile foundations and their loads deserve special attention. For one thing above all is to be avoided in plant operations, and that is the risk of turbine tilt.

An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model. The updated system reliability is then obtained through coupling the updated deterioration model with a probabilistic structural model. The underlying high-dimensional structural reliability problems are solved using subset simulation, which is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue.

A novel method for risk-based optimization of inspection and repair strategies for deteriorating structural systems has recently been proposed. The method defines heuristics at the system level to reduce the number of possible strategies. For each defined strategy, it computes the updated system failure probability conditional on simulated inspection and repair histories, and evaluates the associated costs and risk. The expected total service life costs and risk for a strategy are finally determined using Monte Carlo simulation. The optimal strategy minimizes the expected total service life costs and risk. We intend to adopt this approach to optimize inspection, monitoring and repair activities for offshore wind park support structures. As a first step, we simulate – in analogy to an offshore wind park – the service life performance of an inspected group of jacket-type frames. The performance is quantified in terms of the group’s system failure probability conditional on simulated inspection and repair histories. The underlying system model accounts for the structural redundancy of the frames and the interdependence among their failure events due to similar loading conditions. The model also captures stochastic dependence among the deterioration states of the frames. As part of the simulation process the a-priori unknown outcome of any planned inspection is generated conditional on the outcome of all previous inspections.

A complex measuring campaign has been performed including the simultaneous measurement of vehicle, track, and soil vibrations during train runs at 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. A ballast track on the soil surface and on a concrete bridge have been investigated as well as a slab track in a tunnel. The evaluation and comparison of all these data shows a generally good agreement for all components if the strong low- and high-frequency cut-off characteristics of the layered and damped soil are incorporated. There is a strong causal correlation between the vehicle and the soil by the dynamic excitation forces and a weak relation between the track and the soil by the axle-sequence spectrum of the train. However, the similarity between the axle-impulse spectrum observed at the track and the spectra of the ground vibration lead to the special excitation component of “scattered axle impulses” which is pre-dominant at the far-field points of the soil.

Offshore wind energy towers are dynamically loaded by waves and wind. Pile foundations provide stiffness and damping and should be properly calculated. A combined finite-element boundary-element method for the dynamic interaction of flexible structures and the soil has been developed. The flexible structures such as single piles or complete wind energy towers are modeled by the finite element method whereas the homogeneous or layered soil is modeled by the boundary element method which uses the Green’s functions for interior loads in the layered half-space to establish the dynamic stiffness matrix of the soil. Soils with a stiffness that is continuously increasing with depth can be modeled as multi-layer soils with step-wise increasing stiffness. The effects of different parameters such as the stiffness of the soil, the axial and bending stiffness of the pile, and the radius of the cylindrical contact area will be analysed for the different components of excitation (vertical, horizontal, rotation and coupling). The results can be determined as specific power laws which are different for the different load cases and for the different soil models (Winkler support, homogeneous continuum, continuum with increasing stiffness). The dynamic effect of radiation damping will be analysed by the frequency-dependent compliance functions. A clear layering of the soil can cause noticeable changes in the dynamic compliances as reductions of the stiffness and the damping in certain frequency ranges (below and around layer resonance frequencies). The distribution of the displacements along the pile help to explain the observed laws. An example of an offshore wind energy tower has been modeled and calculated for wind, wave and weight loads. The resonances of the tower are usually limited by the radiation damping which is strongest for a soft soil.

The dynamics of un-isolated and isolated ballast tracks have been analysed by multi-beam models for the track and by a layered half-space model for the soil. The solution is calculated in frequency-wavenumber domain and transformed back to space domain by a wavenumber integral. This is a faster method compared to other detailed track-soil interaction methods and almost as fast as the widely used Winkler-soil method, especially if the compliances of the soil have been stored for repeated use. Frequency-dependent compliances and force transfer functions have been calculated for a variety of track and soil parameters. The ballast has a clear influence on the high-frequency behaviour whereas the soil is dominating the low-frequency behaviour of the track. A layering of the soil may cause a moderate track-soil resonance whereas more pronounced vehicle-track resonances occur with elastic track elements like rail pads, sleeper pads and ballast mats. Above these resonant frequencies, a reduction of the excitation forces follows as a consequence. The track deformation along the track has been analysed for the most interesting track systems. The track deformation is strongly influenced by the resonances due to layering or elastic elements. The attenuation of amplitudes and the velocity of the track-soil waves change considerably around the resonant frequencies. The track deformation due to complete trains have been calculated for different continuous and Winkler soils and compared with the measurement of a train passage showing a good agreement for the continuous soil and clear deviations for the Winkler soil model.

This paper deals with uncertainty considerations in damage diagnosis using the stochastic subspace-based damage detection technique. With this method, a model is estimated from data in a (healthy) reference state and confronted to measurement data from the possibly damaged state in a hypothesis test. Previously, only the uncertainty related to the measurement data was considered in this test, whereas the uncertainty in the estimation of the reference model has not been considered. We derive a new test framework, which takes into account both the uncertainties in the estimation of the reference model as well as the uncertainties related to the measurement data. Perturbation theory is applied to obtain the relevant covariances. In a numerical study the effect of the new computation is shown, when the reference model is estimated with different accuracies, and the performance of the hypothesis tests is evaluated for small damages. Using the derived covariance scheme increases the probability of detection when the reference model estimate is subject to high uncertainty, leading to a more reliable test.

Suction Bucket Jackets (SBJ) are found as a suitable alternative to driven piles for the support of foundations for offshore wind energy converters. In the case of jackets or multipods, a predominant vertical load is to be expected. The effect of such a tensile loading is the generation of suction in the soil inside the bucket which leads to an increment of tensile capacity. This paper aims to study the bearing behaviour of a suction foundation by taking into account how the soil permeability and the loading rate influence the foundation behaviour. Moreover, after submitting the structure to a storm load, the bearing capacity is studied again, in order to see the effect of such a load on the bucket's bearing behaviour. This study is carried out by means of Finite Element numerical simulations based on the formulation of Biot's equations combined with a constitutive model that reproduces the key aspects of cyclic soil behaviour in the frame of Generalized Plasticity.

The damage detection and repair control have become important tasks for ballast and slab tracks. Measurements which compare the damaged and the repaired status of the same track section at different times, or which compare a damaged and an intact track section at the same time, have been successfully performed at some sites in Germany. The loss of contact between the sleeper and the track plate, between the track plate and the base plate, and between the base plate and the base layer have been analysed. The soil properties of each site have been measured and have been used to establish realistic track-soil models. Theoretical results of the wavenumber domain and the finite-element boundary element method have been compared with the experimental results. The observed experimental and theoretical results, changes in the time histories of displacements and velocities due to train passages and in the transfer functions (receptances) due to hammer impacts, are encouraging that these measurements can be used to detect track damage.

Experiments have been performed at a test site with six different tracks with under-ballast plates. Hammer excitations of the soil and the tracks as well as train passages have been measured. The experimental observations are as follows. 1. The natural soil is stiff gravel whereas the railway dam consists of softer material. 2. The track compliance indicates a soft ballast if no train is present to provide a confining pressure. 3. The track response to the train passages can be split into a low-frequency region which is ruled by the static loads and a high-frequency region which is ruled by dynamic loads. 4. The track responses to hammer and track excitation indicate the presence of many voids between the sleepers and the ballast. 5. The ground vibrations are highly influenced by the soil. Due to the stiff soil at the site, the hammer and train induced spectra have a considerable high-frequency content. 6. A reduction of the ground vibration has been observed in a low-frequency range. The mitigation effects of an under-ballast plate are also investigated by calculations of a wavenumber domain model. The under-ballast plate has an effect at low frequencies where it distributes the static load over a longer track section. The impulse of the axle passage is longer and the frequencies are lower due to the plate stiffness. The axle impulses could yield a low-frequency ground vibration in an irregular soil with a randomly varying stiffness. This low-frequency part of the ground vibration (the scattered axle impulses) seem to be reduced by the under-ballast plate.

Offshore wind turbines enter unknown territory, especially where the foundations are concerned. This is because offshore wind power can only make use of the experience from the common offshore constructions used by the oil and gas industry to a limited extent. The offshore wind industry has tried to reduce foundation dimensions, especially the pile lengths, as much as possible compared with those of the oil and gas industry. This is because with the large number of wind turbines involved it can provide considerable economic advantages. On the other hand, the stability of the foundations is additionally at risk because due to the much larger number of cyclic loads they are subjected to it is very difficult to predict how they will behave. Since offshore wind farms are manufactured in series, every systematic fault in the foundation acts as a series fault for a large number of turbines. This calls for monitoring – and the right dimensions of pile foundation, the most common type of foundations used for wind turbines

Die Verdichtungsinjektion stellt ein Verfahren in der Geotechnik dar, bei dem der Baugrund durch Einpressen eines Mörtels mit hoher innerer Reibung verdichtet wird, ohne ihn aufzubrechen. Dieses Verfahren wird weithin verwendet zur Setzungskontrolle oder Erhöhung der Tragfähigkeit des Baugrunds unter neuen bzw. bestehenden Bauwerken.
Da die Injektion innerhalb des Bodens stattfindet, ist eine visuelle Beurteilung des Verdichtungserfolgs nicht möglich. Bisher beruht die Beurteilung bzw. Bewertung daher zumeist auf Erfahrungen. Ziel ist es somit mittels numerischer und experimenteller Untersuchungen eine Methode zu erschaffen, die es ermöglicht den Verdichtungserfolg nicht nur vorherzusagen sondern auch bezüglich der Materialparameter des Injektionsguts zu optimieren. Bezüglich der Numerik werden sowohl die grundsätzliche Eignung als auch die ersten notwendigen Anpassungen der impliziten "Material Point Method" zur Simulation einer Verdichtungsinjektion präsentiert. Für die experimentellen Untersuchungen wurde eigens ein Versuchsstand konstruiert, in dem es möglich ist, den Injektionsprozess an einer Glasscheibe zu beobachten und mittels digitaler Bildverarbeitung zu bewerten.

Vibration-based model updating and identification of multiple axial forces in truss structures
(2017)

Safety assessment of existing iron and steel truss structures requires the determination of the axial Forces and corresponding stresses in truss structural members. The results of the axial force determination can be integrated as part of a structural health Monitoring scheme for existing trusses. In this work, a methodology is proposed to identify multiple axial forces in members of a truss structure based on the modal parameters. Vibration test allows the identification of the natural frequencies and mode shapes, globally of the truss structure as well as locally of the individual bars. The method calibrates the numerical model of the truss structure using a genetic algorithm and strategic validation criteria. The validation criteria are based on the identified natural frequencies and global mode shapes of the truss structure as well as information of the axial forces in the individual bars of the truss, which are estimated from the natural frequencies and five amplitudes of the corresponding local mode shapes of the single bars based on an analytical-based algorithm. The calibration allows the identification of the axial forces in all bars of the truss structure. For mode pairing strategy, a technique makes use of the enhanced modal assurance criteria with the calculation of the modal strain energies.
Moreover, the modal strain energies are also used to select the relevant local mode shape of the individual bars. The feasibility and accuracy of the proposed methodology is verified by laboratory experiments on several truss structures. In situ tests on existing trusses are intended. The results from one of the laboratory tested structures, i.e. a two-bar system, are included in this paper.

Die Beanspruchung von Freileitungen erfolgt hauptsächlich durch Naturlasten. Dabei spielt für die bemessungsbestimmenden Lastfälle häufig der Wind eine entscheidende Rolle. Die Leiter, die mehrere hundert Meter weit spannen, tragen einen wesentlichen Anteil zur Gesamtbeanspruchung von Tragmasten bei, die wiederum Eigengewicht und Windlasten der Leiter zwischen zwei Abspannmasten abtragen. Wenn die Reaktion der Seile auf Starkwindereignisse abgeschätzt werden soll, müssen sowohl geometrische Nichtlinearitäten durch die großen Verformungen wie auch aerodynamische Nichtlinearitäten berücksichtigt werden. Insbesondere für die Anwendung und Berücksichtigung in Bemessungsvorschriften werden hierfür Vereinfachungen vorgenommen. In diesem Beitrag wird eine umfassende Untersuchung vorgestellt, über Naturmessungen, FEM-Simulationen kombiniert mit Windkanalversuchen und generierten Windzeitreihen. Ziel ist es, existierende Bemessungsvorschriften im Hinblick auf die Abschätzung der Beanspruchung aus Wind auf Leiter zu validieren. Hierbei sind insbesondere die Turbulenzannahmen und das dynamische Verhalten von weitgespannten Leitern wichtig, um die Extremschnittgrößen zu beschreiben. Mithilfe von so genannten Spannweitenfaktoren sollen die relevanten Parameter, wie Spannweite und Windturbulenz, bei der Beanspruchungsabschätzung berücksichtigt werden.

Windeinwirkungen auf Freileitungen wurden in der Vergangenheit meist an exponierten Standorten bestimmt. In einem Langzeitversuch wurden seit 2012 an einer mit moderner Messtechnik ausgerüsteten 380-kV-Leitung der 50 Hertz Transmission GmbH, die im nicht besonders exponierten Gelände verläuft und somit den Leitungen im Netz entspricht, die Windgeschwindigkeiten entlang der Leiter und deren Auswirkungen auf die Stützpunkte gemessen. Die Messungen und die begleitenden Auswertungen bestätigen die heute verwendeten normativen Vorgaben für die Windwirkung auf die Leiter von Freileitungen, soweit dies in der relativ kurzen Zeit von fünf Jahren möglich ist.