6.2 Material- und Oberflächentechnologien
Filtern
Dokumenttyp
Schlagworte
- Laser-induced periodic surface structures (LIPSS) (73)
- Surface functionalization (31)
- Corrosion (28)
- Femtosecond laser (26)
- Laser processing (18)
- Applications (17)
- Femtosecond laser ablation (16)
- Radiation protection (15)
- Laser-induced periodic surface structures, LIPSS (12)
- Laser-induced X-ray emission (11)
Organisationseinheit der BAM
- 6 Materialchemie (251)
- 6.2 Material- und Oberflächentechnologien (251)
- 4 Material und Umwelt (32)
- 4.1 Biologische Materialschädigung und Referenzorganismen (32)
- 9 Komponentensicherheit (28)
- 6.1 Oberflächen- und Dünnschichtanalyse (26)
- 9.5 Tribologie und Verschleißschutz (20)
- 6.7 Materialsynthese und Design (11)
- 1 Analytische Chemie; Referenzmaterialien (10)
- 9.0 Abteilungsleitung und andere (8)
Paper des Monats
- ja (5)
AbstractWe investigated the corrosion properties and transpassive behavior of CrMnFeCoNi and CrCoNi multi‐principal element alloys (MPEAs) in a 0.1 M NaCl electrolyte at pH 12. By using SECM‐based tip substrate voltammetry (TSV) in combination with the chemical analysis of the electrolyte, we were able to differentiate between anodic metal dissolution and oxygen evolution in the transpassive range. Our investigations have shown that CrCoNi has a significantly higher corrosion resistance compared to CrMnFeCoNi. In the studied alkaline environment, a transpassive oxide film is formed on the surface of CrCoNi during secondary passivation. This transpassive oxide film appears to play a significant role in oxygen evolution, as the increase in TSV currents at the microelectrode coincides with the corresponding current density plateau of the voltametric current trace. The formation of the transpassive oxide film was not observed in previous studies conducted in acidic environments. Moreover, the alkaline electrolyte induced a positive hysteresis and mild pitting corrosion, in addition to intergranular corrosion, which was the sole corrosion process observed at acidic pH levels. These findings enhance the understanding of the processes governing the transpassivity of CrMnFeCoNi and CrCoNi MPEAs in alkaline environments and have potential implications for the development of application‐tailored corrosion‐resistant MPEAs.
Laser engineered architectures for magnetic flux manipulation on superconducting Nb thin films
(2025)
Custom shaped magnetic flux guiding channels have been fabricated on superconducting Nb thin films by laser nanopatterning of their surface. Preferential pathways are defined by suitable combination of imprinted anisotropic pinning domains through laser-induced periodic surface structures (LIPSS). Generated by the selective energy deposition of femtosecond UV laser pulses, quasi-parallel ripple structures are formed under optimized irradiation conditions. On average, each domain is formed by grooves with a lateral period of 260–270 nm and a depth about 80 nm. By combination of scanning and transmission electron microscopy, magneto-optical imaging, and conductive atomic force microscopy techniques, we conclude that the boundaries of the LIPSS-covered domains play a prominent role in the magnetic flux diversion process within the film. This is confirmed by dedicated modeling of the flux dynamics, combined with the inversion of the magneto-optical signal. The created metasurfaces enable control of the flux penetration process at the microscale.
Capabilities and limitations of Sipe’s first principles LIPSS theory: current aspects and directions
(2024)
This presentation elucidates the fundamentals and capabilities of John E. Sipe’s first principles theory (1983) of laser-induced periodic surface structures (LIPSS), representing an analytical mathematical approach (Green’s formalism) to calculate the absorption of electromagnetic radiation at a microscopically rough surface via the so-called efficacy factor. It includes a discussion of assumptions made in the theory and resulting limitations, such as the restriction to a near-surface layer (the so-called “selvedge”), the lack of any material response, or missing inter-pulse feedback phenomena being relevant in typical multi-pulse irradiation conditions. The influence of the angle of incidence, the polarization direction (s-pol. or p-pol.), the optical properties (dielectric permittivity) of the irradiated materials, as well as its surface roughness and its specific encoding in the theory via a shape factor (s) and a filling factor (f) are addressed.
A simplifying mathematical reformulation (without changing the validity range) of Sipe’s theory in the form of 14 complex-valued equations published in 2005 is motivated, as well as the necessity of some minor adjustments for non-normal incident radiation - revealed in a very recent Erratum. Starting with 2009, extensions of the original theory were developed, e.g., the analytical Sipe-Drude model in order to include intra-pulse transient changes of the optical properties of the material. Finite-difference time-domain (FDTD) numerical simulations successfully confirmed in 2012 the validity of the Sipe-Drude approach. Moreover, the FDTD formalism can be extended to sub-surface regions and can be combined with a material response (topography) modelling for iteratively considering inter-pulse feedback phenomena.
Finally, we will provide characteristic examples of Sipe’s efficacy factor for typical material classes (metals, semiconductors, dielectrics), we will explain how the results can be interpreted, and line out how the Sipe theory may be extended further.
Making Light Matter
(2024)
Material Acceleration Platforms (MAPs) represent a transformative approach to the development of resilient and sustainable technology value chains. These platforms can identify candidate chemistries and structures via simulations, and database searches and leverage machine learning-based rapid screening to accelerate the discovery and deployment of novel materials, thereby addressing critical challenges in modern technology sectors.
Incorporating high-fidelity advanced characterization in the early phases of material development is crucial for early de-risking. Advanced characterization techniques, such as X-ray diffraction, advanced electrochemical and spectroscopic techniques provide comprehensive insights into the structural, chemical, and physical properties of materials. Long-term testing further contributes to the de-risking process by evaluating the durability and stability of materials under various environmental and operational conditions. Early identification of potential degradation mechanisms enables the refinement of material compositions and processing methods, ultimately leading to the development of more resilient materials.
Early upscaling attempts are integral to assessing the feasibility of material leads generated through machine learning-based rapid screening to evaluate the scalability of synthesis and processing techniques. This step is critical for identifying potential challenges in manufacturing, such as issues related to reproducibility, yield, and cost-effectiveness. Process design has to be a major part of the MAP-based material design to cope with the increasing share of secondary raw materials in supply chains.
This presentation will briefly summarize possible strategies to address these issues and provide deep-dives on best practices. As the demand for advanced materials continues to grow, MAPs will play an increasingly vital role in driving technological advancements and addressing global challenges.
Recent publications indicate that the order of electrochemical anodization (before or after the laser-processing step) plays an important role for the response of boneforming osteoblasts – an effect that can be utilized for improving permanent dental- or removable bone-implants. For exploring these different surface functionalities, multi-method chemical and structural characterizations were performed for two different characteristic micro-spikes covered by nanometric laserinduced periodic surface structures (LIPSS) on Ti-6Al-4V upon irradiation with nearinfrared ps-laser pulses (1030 nm wavelength, ~1 ps pulse duration, 66 & 80 kHz pulse repetition rate) at two distinct sets of laser fluence and beam scanning parameters. This involves morphological and topographical investigations by scanning electron microscopy (SEM) and white light interference microscopy (WLIM), near-surface chemical analysis by X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HAXPES), as well as structural material examination via X-ray diffraction (XRD) measurements. The results allow to qualify the laser ablation depth, assess the spike geometry and surface roughness parameters, and provide detailed insights into the near-surface oxidation that may cause the different cell growth behavior for pre- or post-anodized medical implants.
Recent publications indicate that the order of electrochemical anodization (before or after the laser processing step) plays an important role for the response of bone-forming osteoblasts—an effect that can be utilized for improving permanent dental or removable bone implants. For exploring these different surface functionalities, multimethod morphological, structural, and chemical characterizations are performed in combination with electrochemical pre- and postanodization for two different characteristic microspikes covered by nanometric laser-induced periodic surface structures on Ti–6Al–4V upon irradiation with near-infrared ps-laser pulses (1030 nm wavelength, ≈1 ps pulse duration, 67 and 80 kHz pulse repetition frequency) at two distinct sets of laser fluence and beam scanning parameters. This work involves morphological and topographical investigations by scanning electron microscopy and white light interference microscopy, structural material examinations via X-ray diffraction, and micro-Raman spectroscopy, as well as near-surface chemical analyses by X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The results allow to qualify the mean laser ablation depth, assess the spike geometry and surface roughness parameters, and provide new detailed insights into the near-surface oxidation that may affect the different cell growth behavior for pre- or postanodized medical implants.
Durch Auslagerungs- und elektrochemische Tests im Labor kann das Korrosionsverhalten verschiedener metallener Werkstoffe beurteilt werden. Aus den Versuchsergebnissen, die in verschiedenen synthetischen Geothermalwässern im Labor erzielt wurden, lassen sich die folgenden Schlussfolgerungen ziehen:
• Die Anfälligkeit für Spaltkorrosion wurde als wichtigster Aspekt für die Werkstoffqualifizierung ermittelt.
• Der niedriglegierte Stahl 25CrMo4 zeigte bei niedrigem Salzgehalt in MB-Geothermalwasser eine gleichmäßige Korrosion unterhalb der akzeptierten Schwelle von 0,3 mm/Jahr. Daher kann er als geeignet für geothermische Bedingungen mit niedrigem Salzgehalt angesehen werden, wie sie für MB getestet wurden. Es besteht keine Notwendigkeit, auf höherlegierte (teurere) Werkstoffe auszuweichen. Ein niedrigerer pH-Wert (wie bei LHD) führt zu Korrosionsraten oberhalb der akzeptablen Grenzwerte, so dass die niedriglegierten Werkstoffe nicht für Flüssigkeiten mit niedrigem pH-Wert geeignet sind.
• Stark salzhaltige Geothermalwässer erfordern höherlegierte Werkstoffe, da die Korrosionsrate von niedriglegiertem Stahl zu hoch ist.
• Der Duplexstahl X2CrNiMo22-5-3 und der Superduplexstahl X2CrNiMoCuWN25-7-4 wurden aufgrund ihrer kritischen Anfälligkeit für örtliche Korrosion in Form von Loch- und Spaltkorrosion unter Betriebsbedingungen nicht als geeignet für geothermische Anwendungen in Geothermalwässern mit einer mit NDB und ORG vergleichbaren Zusammensetzung angesehen.
• Der superaustenitische Stahl X1CrNiMoCu32-28-7 eignet sich für ORG und salzarme Wässer. In NDB-Geothermalwasser wurde er bei 100 °C als geeignet angesehen. Jedoch schränkt seine Anfälligkeit für Spaltkorrosion seine Anwendbarkeit ein. Neben seiner guten Korrosionsbeständigkeit ist sein Repassivierungsverhalten für seine begrenzte Anwendbarkeit in Geothermalwässern mit niedrigem pH-Wert verantwortlich.
• Die Nickelbasislegierung NiCr23Mo16Al wurde als geeignet erachtet und stellt eine sichere Option für den Einsatz in geothermischen Anlagen dar, selbst wenn mit stark salzhaltigem Geothermalwasser gearbeitet wird.
Durch Auslagerungs- und elektrochemische Tests im Labor kann das Korrosionsverhalten verschiedener metallener Werkstoffe beurteilt werden. Aus den Versuchsergebnissen, die in verschiedenen synthetischen Geothermalwässern im Labor erzielt wurden, lassen sich die folgenden Schlussfolgerungen ziehen:
• Die Anfälligkeit für Spaltkorrosion wurde als wichtigster Aspekt für die Werkstoffqualifizierung ermittelt.
• Der niedriglegierte Stahl 25CrMo4 zeigte bei niedrigem Salzgehalt in MB-Geothermalwasser eine gleichmäßige Korrosion unterhalb der akzeptierten Schwelle von 0,3 mm/Jahr. Daher kann er als geeignet für geothermische Bedingungen mit niedrigem Salzgehalt angesehen werden, wie sie für MB getestet wurden. Es besteht keine Notwendigkeit, auf höherlegierte (teurere) Werkstoffe auszuweichen. Ein niedrigerer pH-Wert (wie bei LHD) führt zu Korrosionsraten oberhalb der akzeptablen Grenzwerte, so dass die niedriglegierten Werkstoffe nicht für Flüssigkeiten mit niedrigem pH-Wert geeignet sind.
• Stark salzhaltige Geothermalwässer erfordern höherlegierte Werkstoffe, da die Korrosionsrate von niedriglegiertem Stahl zu hoch ist.
• Der Duplexstahl X2CrNiMo22-5-3 und der Superduplexstahl X2CrNiMoCuWN25-7-4 wurden aufgrund ihrer kritischen Anfälligkeit für örtliche Korrosion in Form von Loch- und Spaltkorrosion unter Betriebsbedingungen nicht als geeignet für geothermische Anwendungen in Geothermalwässern mit einer mit NDB und ORG vergleichbaren Zusammensetzung angesehen.
• Der superaustenitische Stahl X1CrNiMoCu32-28-7 eignet sich für ORG und salzarme Wässer. In NDB-Geothermalwasser wurde er bei 100 °C als geeignet angesehen. Jedoch schränkt seine Anfälligkeit für Spaltkorrosion seine Anwendbarkeit ein. Neben seiner guten Korrosionsbeständigkeit ist sein Repassivierungsverhalten für seine begrenzte Anwendbarkeit in Geothermalwässern mit niedrigem pH-Wert verantwortlich.
• Die Nickelbasislegierung NiCr23Mo16Al wurde als geeignet erachtet und stellt eine sichere Option für den Einsatz in geothermischen Anlagen dar, selbst wenn mit stark salzhaltigem Geothermalwasser gearbeitet wird.