Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe
  • Organisationseinheit der BAM

5 Werkstofftechnik

  • 5.0 Abteilungsleitung und andere (117) RSS-Feed abonnieren
  • 5.1 Materialographie, Fraktographie und Alterung technischer Werkstoffe (336) RSS-Feed abonnieren
  • 5.2 Experimentelle und modellbasierte Werkstoffmechanik (270) RSS-Feed abonnieren
  • 5.3 Mechanik der Polymerwerkstoffe (279) RSS-Feed abonnieren
  • 5.4 Keramische Prozesstechnik und Biowerkstoffe (135) RSS-Feed abonnieren
  • 5.5 Technische Keramik (137) RSS-Feed abonnieren
  • 5.6 Glas (192) RSS-Feed abonnieren

Filtern

Autor

  • Rabe, Torsten (3)
  • Mieller, Björn (2)
  • Naghib Zadeh, Hamid (2)
  • Bolte, J. (1)
  • Dörfel, Ilona (1)
  • Feigl, Michael (1)
  • Gemeinert, Marion (1)
  • Karmazin, R. (1)
  • Kranzmann, Axel (1)
  • Nofz, Marianne (1)
+ weitere

Erscheinungsjahr

  • 2013 (4) (entfernen)

Referierte Publikation

  • ja (4) (entfernen)

Schlagworte

  • LTCC (2)
  • Air oxidation (1)
  • Alumina (1)
  • Chromium (1)
  • Co-firing (1)
  • Diffusion (1)
  • Manganese (1)
  • MnZn-ferrite (1)
  • Sol-gel deposition (1)
  • Strain gauge (1)
+ weitere

Organisationseinheit der BAM

  • 5.5 Technische Keramik (4) (entfernen)

4 Treffer

  • 1 bis 4
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor
  • Autor
Influence of a sol-gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650 °C (2013)
Schulz, Wencke ; Feigl, Michael ; Dörfel, Ilona ; Nofz, Marianne ; Kranzmann, Axel
The need for a more efficient coal power plant generation (e.g. oxyfuel technology) results in modified process parameters and enhanced corrosion. To reach the necessary service life of high temperature parts protective coatings may be a sufficient technical solution. A modified Yoldas sol (Al2O3 based) was used to coat X20CrMoV12-1 by spin coating. After appropriate heat treatments transition alumina coatings being about 400 nm thick were obtained. Oxidation studies were carried out in laboratory air at temperatures up to 650 °C for up to 500 h exposure time. In case of the uncoated sample a rough oxide layer formed on the surface and a remarkable weight gain (2.62 mg/cm²) were detected. The sol–gel alumina layer (mainly δ-Al2O3) demonstrated a high protection, i.e. a very low weight gain (0.05 mg/cm²). Diffusion of alloying elements into the coating was observed. No indication of spallation of the coating occurred. Local defects (2 µm–30 µm) in the coating led to the formation of iron-oxide islands.
Integration of MnZn-ferrite tapes in LTCC multilayer (2013)
Naghib Zadeh, Hamid ; Rabe, Torsten ; Karmazin, R.
For co-firing of MnZn-ferrite tapes and LTCC dielectric tapes, the sintering shrinkage curves and the coefficient of thermal expansion of ferrite and dielectric tapes were matched. Highly densified embedded ferrite without any cracks could be manufactured by co-firing at 900 °C in nitrogen atmosphere. However, the permeability of MnZn-ferrite co-fired between dielectric tapes is significantly reduced (µ´=100) compared to that of the separately sintered ferrite (µ´=500). Changes in the phase stability and microstructure of MnZn-ferrite were investigated to explain the permeability reduction in the embedded ferrite. It is supposed that early densification of the dielectric tapes on the top and bottom of the ferrite layer prevent the gas exchange during sintering which is necessary for (Mn,Zn)Fe2O4 spinel formation. As a result, high amount of Fe2O3 secondary phase and a Mn-rich spinel phase with low permeability remain in the embedded ferrite layer.
Low-temperature co-fired ceramic substrates for high-performance strain gauges (2013)
Mieller, Björn ; Gemeinert, Marion ; Rabe, Torsten ; Bolte, J.
Recent advances in the development of high gauge factor thin films for strain gauges prompt the research on advanced substrate materials. A glass ceramic composite has been developed in consideration of a high coefficient of thermal expansion (9.4 ppm/K) and a low modulus of elasticity (82 GPa) for the application as support material for thin-film sensors. In the first part, constantan foil strain gauges were fabricated from this material by tape casting, pressure-assisted sintering, and subsequent lamination of the metal foil on the planar ceramic substrates. The accuracy of the assembled load cells corresponds to accuracy class C6. That qualifies the load cells for the use in automatic packaging units and confirms the applicability of the low-temperature co-fired ceramic (LTCC) substrates for fabrication of accurate strain gauges. In the second part, to facilitate the deposition of thin-film sensor structures to the LTCC substrates, pressure-assisted sintering step is modified using smooth setters instead of release tapes, which resulted in fabrication of substrates with low average surface roughness of 50 nm. Titanium thin films deposited on these substrates as test coatings exhibited low surface resistances of 850 Ω comparable to thin films on commercial alumina thin-film substrates with 920 Ω. The presented material design and advances in manufacturing technology are important to promote the development of high-performance thin-film strain gauges.
Improved co-firing of ferrite and dielectric tape based on master sintering curve predictions and shrinkage mismatch calculations (2013)
Mieller, Björn ; Naghib Zadeh, Hamid ; Rabe, Torsten
Co-firing of low temperature co-fired ceramics (LTCC) and functional ceramics like ferrites is a promising approach to increase the level of integration in future microsystems, and to create new applications for LTCC technology. Besides the development of compatible material combinations, the configuration of the sintering process is an important issue for successful co-firing. A method is presented to derive the linear shrinkage mismatch of a material combination based on density data calculated from the master sintering curves (MSCs) of the individual materials. The influence of the firing profile on the constraint in the combined multilayer can be anticipated using this method. To investigate and improve the co-firing of ferrite and dielectric tape, the shrinkage mismatch with respect to heating rate was studied. A significant reduction of shrinkage mismatch was found for increased heating rates. The calculated results are verified by lateral shrinkage measurements on combined laminates.
  • 1 bis 4

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks