Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe

Filtern

Autor

  • Bartholmai, Matthias (206)
  • Neumann, Patrick P. (75)
  • Johann, Sergej (31)
  • Tiebe, Carlo (24)
  • Köppe, Enrico (23)
  • Lazik, D. (18)
  • Strangfeld, Christoph (18)
  • Werner, Klaus-Dieter (17)
  • Kammermeier, Michael (13)
  • Hüllmann, Dino (12)
+ weitere

Erscheinungsjahr

  • 2021 (1)
  • 2020 (7)
  • 2019 (19)
  • 2018 (22)
  • 2017 (23)
  • 2016 (27)
  • 2015 (13)
  • 2014 (17)
  • 2013 (15)
  • 2012 (16)
+ weitere

Dokumenttyp

  • Beitrag zu einem Tagungsband (70)
  • Posterpräsentation (45)
  • Zeitschriftenartikel (44)
  • Vortrag (32)
  • Beitrag zu einem Sammelband (8)
  • Forschungsbericht (4)
  • Sonstiges (2)
  • Dissertation (1)

Sprache

  • Englisch (134)
  • Deutsch (69)
  • Mehrsprachig (2)
  • Polnisch (1)

Referierte Publikation

  • nein (151)
  • ja (55)

Schlagworte

  • Structural health monitoring (17)
  • RFID sensors (14)
  • Gas storage areas (12)
  • Membrane-based gas sensing (12)
  • Subsurface monitoring (12)
  • Monitoring (11)
  • Mobile Robot Olfaction (10)
  • Smart structures (10)
  • Drop test (9)
  • Sensors in concrete (9)
+ weitere

Organisationseinheit der BAM

  • 8 Zerstörungsfreie Prüfung (112)
  • 8.1 Sensorik, mess- und prüftechnische Verfahren (112)
  • 8.2 Zerstörungsfreie Prüfmethoden für das Bauwesen (24)
  • 1 Analytische Chemie; Referenzmaterialien (14)
  • 1.9 Chemische und optische Sensorik (12)
  • 6 Materialchemie (11)
  • 8.6 Faseroptische Sensorik (10)
  • 6.7 Oberflächenmodifizierung und -messtechnik (9)
  • 4 Material und Umwelt (7)
  • 4.2 Materialien und Luftschadstoffe (7)
+ weitere

206 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor
  • Autor
Faser-basierter magneto-optischer Schicht-Sensor zum Monitoring von Bauteilen (2018)
Beck, Uwe ; Mitzkus, Anja ; Sahre, Mario ; Weise, Matthias ; Köppe, Enrico ; Bartholmai, Matthias ; Basedau, Frank ; Hofmann, Detlef ; Schukar, Vivien
In Glasfasern eingeschriebene Bragg-Gitter (FBG: fibre-based Bragg gratings) sind über die Verschiebung der Bragg-Wellenlänge in der Lage, Stauchungen und Dehnungen von Glasfasern hochgenau zu erfassen. In Kompositwerkstoffe eingebettete faseroptische Sensoren können Bauteile bezüglich ihrer mechanischen Integrität überwachen und früh-zeitig Informationen über Materialveränderungen gewinnen. Um die Zuverlässigkeit eines solchen Sensors zu gewährleisten, ist es wichtig, die korrekte Funktion des Sensors im Verbund mit der Werkstoff-Matrix on-line und in-situ sicherzu-stellen. Im Rahmen des DFG-Projekts FAMOS² (FAser-basierter Magneto-Optischer SchichtSensor) wurde ein selbstdiagnosefähiger Schichtsensor entwickelt, der mit Hilfe von magnetostriktiven Aktorschichten aus Nickel bzw. Eisen-Nickel validiert werden kann. Der FAMOS²-Schichtsensor wird durch ein PVD (physical vapour deposition)/ECD (electro-chemical deposition) Hybridschichtsystem realisiert, das auf dem Fasermantel im Bereich des FBG haftfest, homogen und langzeitfunktional abzuscheiden ist. Dabei wird in einem ersten Schritt ein etwa 100 Nanometer dünnes PVD-Schichtsystem aus Chrom und Kupfer als Haftvermittler auf der Glasfaser bzw. als leitfähige Startschicht für den nachfolgenden ECD-Prozess abgeschieden. Um eine rotationssymmetrische Schich-tabscheidung zu gewährleisten, erfolgt während der PVD-Beschichtung eine Rotation der Glasfasern. In einem zweiten Schritt wird dann unter Verwendung eines klassischen Watts-Elektrolyten in einer speziell entwickelten ebenfalls rotationssymmetrisch aufgebau-ten ECD-Durchströmungszelle dann die etwa 30 Mikrometer dicke, magnetostriktive Ak-torschicht auf dem PVD-Schichtsystem abgeschieden, im Vergleich sowohl reine Nickel-Schichten als auch Nickel-Eisen-Schichten. Ein äußeres Magnetfeld dehnt die magnetostriktive Aktorschicht und damit auch die Faser reversibel. Diese Dehnung führt zu einer Verschiebung der Bragg-Wellenlänge, welche direkt mit der Stärke eines zu messenden oder zu Validierungszwecken vorgegebenen Magnetfeldes korreliert. Die Anpassung der Beschichtungsverfahren an die Fasergeome-trie und die mechanischen Eigenschaften der Hybridschichten werden hinsichtlich der me-chanischen Integrität des faseroptischen Sensors diskutiert und der Nachweis der Selbst-diagnosefähigkeit erbracht.
Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring (2018)
Neumann, Patrick P. ; Hüllmann, Dino ; Bartholmai, Matthias
In industrial environments, airborne by-products such as dust and (toxic) gases, constitute a major risk for the worker’s health. Major changes in automated processes in the industry lead to an increasing demand for solutions in air quality management. Thus, occupational health experts are highly interested in precise dust and gas distribution models for working environments. For practical and economic reasons, high-quality, costly measurements are often available for short time-intervals only. Therefore, current monitoring procedures are carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. Real-time knowledge of contaminant distributions inside the working environment would also provide means for better and more economic control of air impurities. For example, the possibility to regulate the workspace’s ventilation exhaust locations can reduce the concentration of airborne contaminants by 50%. To improve the occupational health and safety of (industrial) workplaces, this work aims for developing a swarm of gas-sensitive aerial nano robots for monitoring indoor air quality and for localizing potential emission sources.
Embedded wireless sensor systems for long-term SHM and corrosion detection in concrete components (2017)
Bartholmai, Matthias ; Johann, Sergej ; Strangfeld, Christoph
State-of-the-art communication standards like RFID and Bluetooth Low Energy enable the development of sensor systems which can be completely embedded into concrete components for long-term SHM and early damage detection. Objective of the project KonSens which is carried out at BAM is the development, implementation, and validation of sensors for measuring of Parameters relevant for corrosion, like moisture, pH value, and electrical conductivity, inside steel reinforced concrete components. The primarily addressed application is detection and evaluation of corrosion processes in concrete bridges. In contrast to cable connected sensors, embedded wireless sensors avoid any pathways for intrusion of moisture and chemicals, e.g., chlorides which could trigger corrosion activity. To allow for long-term, ideally life-time operation, the once embedded sensor systems must work highly energy efficient. One option are passive RFID sensor systems, which work without battery. The energy is transmitted to the system through the electromagnetic field, even to operate sensors. A crucial parameter is the transmission depth in concrete. First experiments with RFID sensors working at frequencies of 13.56 MHz (HF) and 868 MHz (UHF) embedded in concrete specimen resulted positive for transmission depths of up to 13 cm, which is quite promising, considering that corrosion would appear first at the top level of rebars. A second generation of passive RFID sensor systems has been implemented with improved antenna design. Current experiments using these systems focus on the Transmission characteristics in terms of transmission depths and the impact of concrete moisture. Low-energy humidity sensors are used and analysed regarding their capability for measuring the material moisture. Additionally, a relation between transmitted power to the embedded sensor and the moisture content of the concrete specimen caused by energy absorption can be presumed and is under systematic investigation.
Embedded wireless sensor systems for long-term SHM and corrosion detection in concrete components (2017)
Bartholmai, Matthias
State-of-the-art communication standards like RFID and Bluetooth Low Energy enable the development of sensor systems which can be completely embedded into concrete components for long-term SHM and early damage detection. Objective of the project KonSens which is carried out at BAM is the development, implementation, and validation of sensors for measuring of Parameters relevant for corrosion, like moisture, pH value, and electrical conductivity, inside steel reinforced concrete components. The primarily addressed application is detection and evaluation of corrosion processes in concrete bridges. In contrast to cable connected sensors, embedded wireless sensors avoid any pathways for Intrusion of moisture and chemicals, e.g., chlorides which could trigger corrosion activity. To allow for long-term, ideally life-time operation, the once embedded sensor systems must work highly energy efficient. One option are passive RFID sensor systems, which work without battery. The energy is transmitted to the system through the electromagnetic field, even to operate sensors. A crucial parameter is the transmission depth in concrete. First experiments with RFID sensors working at frequencies of 13.56 MHz (HF) and 868 MHz (UHF)embedded in concrete specimen resulted positive for transmission depths of up to 13 cm, which is quite promising, considering that corrosion would appear first at the top level of rebars. A second generation of passive RFID sensor systems has been implemented with improved antenna design. Current experiments using these systems focus on the transmission characteristics in terms of transmission depths and the impact of concrete moisture. Low-energy humidity sensors are used and analysed regarding their capability for measuring the material moisture. Additionally, a relation between transmitted power to the embedded sensor and the moisture content of the concrete specimen caused by energy absorption can be presumed and is under systematic investigation.
RFID sensor systems embedded in concrete – validation experiments for long-term monitoring (2017)
Bartholmai, Matthias ; Johann, Sergej
Structural Health Monitoring (SHM) is an important part of buildings surveillance and maintenance to detect material failure as early as possible and to contribute in protection of structures and their users. The implementation of Radio Frequency Identification (RFID) sensor systems without cable connection and battery into building components offers innovative possibilities to enable long-term in-situ SHM of addressed structures, bridges. The objectives of the presented study are complete embedding of RFID sensors systems in concrete, full passive communication with the systems, at best for the whole life span of structures. One challenge for this task is the highly alkaline environment in concrete, which requires non-degrading and robust encapsulation. Further Requirements are passive communication and energy supply, appropriate antenna design, placement and fixation in concrete, and the selection and implementation of sensors and connections. The concept is to develop and optimize a simple and robust system, which meets the requirements, as well as comprehensive validation in concrete specimen and real world applications. Two different systems were developed (HF and UHF RFID, respectively). First tasks were the implementation of analog sensors using the superposition principle for the signal adaption. Investigation of suitable materials for robust encapsulation and sensor protection against basic environments. Four materials were investigated in pH 13 solution for 14 days - 3D-Printer-Polymer was completely resolved - PVC has no noticeable decrease in weight - (VitaPro) glass filter for the sensor protector, has weight loss 2.7 % - The epoxy resin has increased by 1.8 % due to moisture expansion Different concrete samples were prepared for the validation of the systems. RFID sensors were embedded in different integration depths. Investigate the energy- and data transfer through concrete, also with varying moisture content. Additionally, signal strength data was used to optimize and validate the antenna characteristics in concrete. Next steps are to guarantee a sufficient energy supply for UHF RFID systems embedded in different concrete mixtures and further embedding the HF and UHF RFID systems in real bridges and buildings to validate the long term monitoring.
RFID-Sensor-Transponder in Beton (2017)
Bartholmai, Matthias ; Strangfeld, Christoph ; Van Bocxlaer, A.
Sensor-Transponder-Lösung der BAM ermöglicht automatisiertes Brückenmonitoring und Predictive Maintenance und detektiert Korrosion in Beton.
RFID sensor system embedded in concrete –validation of UHF antenna geometries in different concrete depths (2017)
Johann, Sergej ; Strangfeld, Christoph ; Bartholmai, Matthias
This paper is a further research on the topic of the complete embedding of radio frequency identification (RFID) sensors in concrete. The focus is on the antenna of the transponder. Earlier investigations of different RFID technologies, embedded in concrete, showed a difference in energy transmission. The transmission through concrete at ultra high frequency (UHF), in spite of the large signal range, does not match the targeted application specific task. Therefore, the antenna characteristics have been examined more closely. The antenna is an important component for the application of RFID. Through the antenna, energy and data transfer takes place, so it is important to design an optimal antenna to accomplish a maximum embedding depths in concrete. To identify the optimal antenna geometry, different UHF antenna types were selected and investigated. An experimental comparison was performed to gain more information about the damping behavior and antenna characteristics in concrete.
Flammschutz von polymeren Baustoffen: Bewertung von Konzepten auf der Basis von Small-scale Cone Calorimeter Untersuchungen (2007)
Bartholmai, Matthias
Flammschutz von polymeren Baustoffen: Bewertung von Konzepten auf der Basis von small- scale Cone Calorimeter Untersuchungen. In der Arbeit wurden zwei unterschiedliche Flammschutzkonzepte polymerer Baustoffe mit Hilfe des Cone Calorimeter untersucht und bewertet. Polymer-Schicht-Nanocomposites sind ein neues Konzept für flammgeschützte Werkstoffe, die aus einer Polymermatrix und der Zugabe eines nanoskaligen Schichtsilikat- Additivs von ca. 5 Gew.-% bestehen. Im Brandfall bilden die Schichtsilikate eine Barriere, die den Wärmetransport in das Material bzw. den Stofftransport der Pyrolysegase aus dem Material hemmt. Mit einem Modellsystem wurde gezeigt, dass dieser Barriereeffekt das Brandverhalten hinsichtlich der Flammenausbreitung verbessert, in anderen Brandszenarien aber wirkungslos bleibt. Die Ergebnisse der Cone Calorimeter Untersuchungen wurden mit denen der Entflammbarkeitstests UL 94 und LOI verglichen. Eine Korrelation in Richtung kleiner Probendimensionen (downscale) und in Richtung Phase der Brandentstehung wurde aufgezeigt. Die Anwendung intumeszierender Beschichtungen auf Bauteile verschiedener Art, wie z. B. tragende Stahlkonstruktionen, ist ein etabliertes Brandschutzkonzept. Das intumeszierende Polymermaterial schäumt unter Wärmeeinwirkung auf und bildet eine wärmeisolierende Schicht. Zur Bewertung der Wirkungsweise dieses Polymermaterials wurde ein auf Temperaturmessungen basierendes Verfahren mit dem Cone Calorimeter und für Simulationsrechnung entwickelt. Die Ergebnisse wurden mit denen aus Kleinprüfstanduntersuchungen verglichen. Eine Korrelation in Richtung großer Probendimensionen (upscale) und in Richtung der Phase des voll entwickelten Brandes konnte bis zu einer Temperaturgrenze gezeigt werden.
Remote Gas Sensing with Multicopter-Platforms (2019)
Winkler, Nicolas P. ; Neumann, Patrick P. ; Hüllmann, Dino ; Kohlhoff, Harald ; Bartholmai, Matthias ; Bennetts, V. H. ; Lilienthal, A. J.
This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping.
Indoor air quality monitoring using flying nanobots: Design and experimental study (2019)
Neumann, Patrick P. ; Hirschberger, Paul ; Baurzhan, Zhandos ; Tiebe, Carlo ; Hofmann, Michael ; Hüllmann, Dino ; Bartholmai, Matthias
In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm.
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks