Filtern
Dokumenttyp
- Beitrag zu einem Tagungsband (2)
- Vortrag (1)
Referierte Publikation
- nein (3)
Schlagworte
- AAM (1)
- Bewehrung (1)
- Corrosion (1)
- GGBFS (1)
- Hüttensandmehl (1)
- Pore solution composition (1)
- Redox potential (1)
- Reinforcing steel (1)
- Stahlkorrosion (1)
- Sulfid (1)
Organisationseinheit der BAM
Eingeladener Vortrag
- nein (1)
Ground Granulated Blast-Furnace Slag (GGBFS), a by-product of the iron-making process, has gained significant attention as a supplementary cementitious material and has become increasingly popular in recent years due to its remarkable properties. GGBFS can significantly reduce the environmental impact of cement production when it comes to building concrete structures. GGBFS can either be blended with ordinary Portland cement (OPC) (up to a 90% replacement), or it can be used in the production of alkali-activated materials (AAMs). However, a comprehensive understanding of the pore solution composition is necessary for understanding various aspects of cementitious materials and their durability, including corrosion behavior, passivation of steel, and resistance to deteriorative processes. In the present work, the pore solutions of seven different GGBFS-containing cements (alkali-activated slag, alkali-activated slag/fly ash blends, a hybrid alkaline cement, CEM III/C, and CEM III/B) were extracted and analysed by inductively coupled plasma-optical emission spectroscopy, ion chromatography, pH, redox potential, and conductivity measurements. For comparison, a Portland cement pore solution was analysed similarly. The Concentrations of reduced sulfur were noteworthy in all GGBFS-containing cements, particularly in alkali-activated cements, where concentrations were notably higher compared to standard cements. The redox potentials of the pore solutions were primarily dictated by the concentrations of reduced sulfur, although other factors may contribute. Additionally, sulfur species in the pore solutions had an impact on pH, electrical conductivity, and other properties pertinent to the corrosion of reinforcements.
Alkali-aktivierte Hüttensandbetone – CO2-reduzierte Bindemittel mit hohem Korrosionsschutzpotential
(2023)
Durch den Ersatz von Portlandzement können alkali-aktivierte Bindemittel einen bedeutenden Beitrag zur Verringerung der durch die Zementklinkerherstellung verursachten CO2-Emissionen leisten. Für die Verwendung von alkali-aktivierten Bindemitteln in Stahlbetonkonstruktionen, die Chloriden oder Carbonatisierung ausgesetzt sind, ist die Fähigkeit des Stahls, den passiven Zustand zu erreichen und aufrechtzuerhalten, von großer Bedeutung. Die Prozesse der Deckschichtbildung von Stahl in alkali-aktivierten Materialien unterscheiden sich jedoch zum Teil grundlegend von denen in Portlandzementen. Alkali-aktivierte Hüttensandbetone weisen gute technische Eigenschaften auf, bisher fehlen jedoch grundlegende Kenntnisse bzgl. ihrer schützenden Wirkung bei korrosiven Angriffen. Dies ist vor allem auf ihre sulfidhaltige Porenlösung zurückzuführen, welche die elektrochemischen Eigenschaften der Stahloberfläche beeinflusst und die Verwendung herkömmlicher Bewertungsmaßstäbe erschwert. Es werden erste Ergebnisse eines DFG-Forschungsprojektes vorgestellt, in dem das Passivierungsverhalten von Stahl in alkali-aktivierten Hüttensandmörteln unterschiedlicher Zusammensetzungen sowie in Mörteln auf Basis hüttensandhaltiger Normzemente untersucht wird. Über einen Zeitraum von mindestens 28 Tagen werden an Zylinderprüfkörpern im 3-Elektroden-Aufbau das Ruhepotential sowie die Polarisationswiderstände der Stahlelektroden ermittelt.
Steel corrosion in sulfide-containing solutions is a challenge in various environments, such as reinforced concrete structures. In concrete, sulfides are introduced by ground granulated blast-furnace slag (GGBFS), used in standard cements and alkali-activated materials (AAMs), affecting steel corrosion. This study examined steel in synthetic GGBFS-containing cement pore solutions using electrochemical techniques. Compared to Portland cement solutions, steel in sulfide-containing solutions exhibits lower open circuit potentials and polarisation resistances. Thus, Portland cement concrete corrosion assessment standards are unsuitable for GGBFScontaining concrete.