Filtern
Erscheinungsjahr
Dokumenttyp
- Zeitschriftenartikel (20)
- Vortrag (8)
- Beitrag zu einem Tagungsband (4)
- Posterpräsentation (3)
Schlagworte
- Fluorescence (17)
- Microfluidics (9)
- Smartphone (6)
- Fluoreszenz (4)
- MIP (4)
- Mikrofluidik (4)
- Rapid test (3)
- Test strip (3)
- Adulteration (2)
- Air quality (2)
Organisationseinheit der BAM
- 1 Analytische Chemie; Referenzmaterialien (26)
- 1.9 Chemische und optische Sensorik (26)
- 8 Zerstörungsfreie Prüfung (6)
- 8.1 Sensorik, mess- und prüftechnische Verfahren (6)
- 1.8 Umweltanalytik (3)
- 4 Material und Umwelt (3)
- 4.0 Abteilungsleitung und andere (3)
- 4.1 Biologische Materialschädigung und Referenzorganismen (2)
- P Präsident (1)
- PST Präsidiale Stabsstelle (1)
Paper des Monats
- ja (3)
Eingeladener Vortrag
- nein (8)
Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the sensitive and selective determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in water samples. 2,4-D being an important and widely used herbicide to regulate plant growth, its extensive use leads to food or ground water contamination. Analytical assays based on MIP have emerged as a valuable tool in the field of environmental analysis thanks to low production costs, stability, format adaptability and their ability to recognize a wide variety of targets, such as the critical neutral organic molecules present in water: herbicides, pesticides, antibiotics, etc.
To accomplish this, a tailor-made fluorescent indicator cross-linker was designed that translates directly the binding event into an enhanced fluorescence signal. This phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phase-transfer assay, extracting the analyte from aqueous sample droplets into organic phase droplets that contain the sensor particles.
This tool offering a novel simple and rapid way for the detection of herbicides, real-time fluorescence determination of 2,4-D down to 20 nM was realized with the system and applied for the analysis of worlwide surface water samples.
The identification and quantification of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, noteworthy to diagnose and treat diseases at an early stage. Small sensing devices like microfluidic chips combined with “smart” detection chemistry and simple data assessment, processing and presentation are attractive in this regard. We developed novel synthetic probes, targeting phosphorylated amino acids, based on core-shell microparticles consisting of a silica core coated with a molecularly imprinted polymer shell (MIP). These “plastic antibodies” which are extremely robust, resist denaturing solvents and high temperatures, can be reproducibly produced at low cost, can potentially overcome many of the problems in the current detection strategies. The MIP layer, containing a fluorescent probe monomer, responds to phosphorylated amino acids such as phosphorylated tyrosine (pTyr) with a significant imprinting factor, i.e. selectivity, higher than 3.5, and a “lighting-up” of its fluorescence accompanied by the development of a strongly red-shifted emission band. The bead-based ratiometric detection scheme has also been successfully transferred to a microfluidic chip format to demonstrate its applicability to rapid assays. Such a device could yield an automated pTyr measurement system in the future. The setup was built by coupling a PDMS/Teflon/glass microfluidic chip with an optical setup for fluorescence measurements able to extract and monitor pTyr concentration from 0.5–200 μM.
Because of the globally increasing prevalence of diabetes, the need for accurate, efficient and at best miniaturized automated analytical systems for sugar detection in medical diagnostics and the food industry is still urgent. The development of molecular probes for sugars based on boronic acid receptors offers an excellent alternative to the kinetically slow enzyme-based sugar sensors. Moreover, by coupling such chelating units with dye scaffolds like BODIPYs (boron–dipyrromethenes), highly fluorescent sugar sensing schemes can be realized. In this work, a boronic acid-functionalized BODIPY probe was developed, which binds selectively to fructose’s adjacent diols to form cyclic boronate esters. Placement of an amino group in direct neighborhood of the boronic acid moiety allowed us to obtain a broad working range at neutral pH, which distinguishes the probe from the majority of systems working only at pH > 8, while still meeting the desired sensitivity in the micro-molar range due to a pronounced analyte-induced fluorescence increase. To enhance the applicability of the test in the sense described above, integration with a microfluidic chip was achieved. Here, fructose was selectively detected by fluorescence with similar sensitivity in real time on chip, and an assay for the straightforward detection of sugar in (colored) sodas without sample clean-up was established.
The fluorescence properties of three molecular rotors, related to 4-dimethylamino-4-nitrostilbene (4-DNS), are studied versus different diesel/kerosene blends. In nonviscous solvents, these compounds can populate a twisted intramolecular charge transfer state which deactivates nonradiatively, successfully suppressing fluorescence emission. Solution experiments with diesel/kerosene blends showed a good linear correlation between the fluorescence intensity of the probe molecules and the diesel fraction of the blend. The dyes have been immobilized on paper, retaining their fluorescence behavior, i.e., negligible emission in the presence of nonviscous organic solvents and increasing fluorescence when the environment is increasingly viscous. When the impregnated paper is devised as a test strip, the latter is compatible with a newly designed smartphone reader system, which allows in-the-field measurements. The method can safely detect the presence of kerosene in diesel at ≥7%, which competes favorably with current standard methods for the detection of diesel adulteration.
Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phasetransfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20 nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world.
2,4-D ist ein in der Landwirtschaft weitverbreitetes Pflanzenschutzmittel, das Grundwasser kontaminiert, sich innerhalb der Nahrungskette anreichert und Umwelt- und Gesundheitsprobleme verursachen kann. Hier stellen die Autoren ein mikrofluidisches Nachweissystem für die Echtzeitdetektion von 2,4-D in Grund- oder Oberflächenwasser vor. Es basiert auf der Kombination 2,4-D-selektiver, fluoreszierender, molekular geprägter Polymer-(MIP-)Mikropartikel mit einem 3D-mikrofluidischen Extraktions- und Detektionssystem. Messungen vor Ort sollen damit künftig möglich sein.
Mit Tröpfchen Spielen
(2018)
Mikrofluidische Systeme sind leistungsstarke analytische Tools mit attraktiven Eigenschaften wie miniaturisierter Größe, geringem Reagenzien und Probenverbrauch, schneller Ansprech- und kurzer Messzeit. Der Bedarf solcher leistungsstarken, miniaturisierten und direkt vor Ort anwendbaren Sensorsysteme steigt kontinuierlich, hauptsächlich durch das Bedürfnis der Gesellschaft, schneller, besser und umfassender über kritische Faktoren im Lebens- und Arbeitsumfeld sowie der Umwelt informiert zu sein.
Playing with Droplets
(2018)
Microfluidic devices are powerful analytical tools with appealing features such as miniaturized size, low reagent and sample consumption, rapid response and short measurement times. As society wants to be ever better, earlier and more comprehensively informed about critical factors in life, work, and the environment, the demand for powerful measurement devices for use outside of the laboratory constantly increases.
Microfluidic electrochemical immunosensor for the trace analysis of cocaine in water and body fluids
(2018)
Quick but accurate testing and on‐the‐spot monitoring of cocaine in oral fluids and urine continues to be an important toxicological issue. In terms of drug testing, a number of devices have been introduced into the market in recent decades, notably for workplace inspection or roadside testing. However, these systems do not always fulfill the requirements in terms of reliability, especially when low cut‐off levels are required. With respect to surface water, the presence of anthropogenic small organic molecules such as prescription and over‐the‐counter pharmaceuticals as well as illicit drugs like cannabinoids, heroin, or cocaine, has become a challenge for scientists to develop new analytical tools for screening and on‐site analysis because many of them serve as markers for anthropogenic input and consumer behavior. Here, a modular approach for the detection of cocaine is presented, integrating an electrochemical enzyme‐linked immunosorbent assay (ELISA) performed on antibody‐grafted magnetic beads in a hybrid microfluidic sensor utilizing flexible tubing, static chip and screen‐printed electrode (SPE) elements for incubation, recognition, and cyclic voltammetry measurements. A linear response of the sensor vs. the logarithm of cocaine concentration was obtained with a limit of detection of 0.15 ng/L. Within an overall assay time of 25 minutes, concentrations down to 1 ng/L could be reliably determined in water, oral fluids, and urine, the system possessing a dynamic working range up to 1 mg/L.